Feedback Amplifier Analysis using Two-port Network Theory

<table>
<thead>
<tr>
<th>Feedback Type</th>
<th>Closed Loop Parameters</th>
<th>Open Loop Parameters</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>R_{IN}</td>
<td>R_{OUT}</td>
<td>A</td>
</tr>
<tr>
<td>$A_v = \frac{v_{out}}{v_{in}} = \frac{A}{1+\alpha}$</td>
<td>$R_{IO} \cdot (1+\alpha)$</td>
<td>$\frac{R_{LO}}{1+\alpha}$</td>
<td>$-\frac{h_{21}^\beta}{R_{IO} \cdot R_{LO}}$</td>
</tr>
<tr>
<td>$A_f = \frac{i_{out}}{i_{in}} = \frac{A}{1+\alpha}$</td>
<td>$R_{IO} \cdot (1+\alpha)$</td>
<td>$\frac{g_{12}^\beta}{R_{LO}}$</td>
<td>$\frac{1}{R_s}$</td>
</tr>
<tr>
<td>$A_{IC} = \frac{i_{out}}{v_{in}} = \frac{A}{1+\alpha}$</td>
<td>$R_{IO} \cdot (1+\alpha)$</td>
<td>$\frac{z_{12}^\beta}{R_{LO}}$</td>
<td>$\frac{1}{R_s}$</td>
</tr>
<tr>
<td>$A_{ib} = \frac{v_{out}}{i_{in}} = \frac{A}{1+\alpha}$</td>
<td>$R_{IO} \cdot (1+\alpha)$</td>
<td>$-\frac{y_{21}^\alpha \cdot R_{IO} \cdot R_{LO}}{1+\alpha}$</td>
<td>$\frac{1}{R_s}$</td>
</tr>
</tbody>
</table>

Determining Two-Port Parameters.

<table>
<thead>
<tr>
<th>2-port Description</th>
<th>Description</th>
<th>11</th>
<th>12</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-parameters</td>
<td>$v_i = h_{11} \cdot i_i + h_{12} \cdot v_2$</td>
<td>$h_{11} = \frac{v_i}{i_i}$ & $h_{12} = \frac{v_i}{v_2}$</td>
<td>$h_{21} = \frac{i_2}{i_2}$ & $h_{22} = \frac{i_2}{v_1}$</td>
<td>v_1 & i_2</td>
<td></td>
</tr>
<tr>
<td>g-parameters</td>
<td>$i_1 = g_{11} \cdot v_1 + g_{12} \cdot i_2$</td>
<td>$g_{11} = \frac{i_1}{v_1}$ & $g_{12} = \frac{i_1}{i_2}$</td>
<td>$g_{21} = \frac{v_2}{v_1}$ & $g_{22} = \frac{v_2}{i_2}$</td>
<td>v_1 & i_2</td>
<td></td>
</tr>
<tr>
<td>z-parameters</td>
<td>$v_i = z_{11} \cdot i_i + z_{12} \cdot v_2$</td>
<td>$z_{11} = \frac{v_i}{i_i}$ & $z_{12} = \frac{v_i}{v_2}$</td>
<td>$z_{21} = \frac{i_2}{i_2}$ & $z_{22} = \frac{i_2}{v_1}$</td>
<td>v_1 & i_2</td>
<td></td>
</tr>
<tr>
<td>y-parameters</td>
<td>$i_1 = y_{11} \cdot v_1 + y_{12} \cdot v_2$</td>
<td>$y_{11} = \frac{i_1}{v_1}$ & $y_{12} = \frac{i_1}{v_2}$</td>
<td>$y_{21} = \frac{i_2}{v_1}$ & $y_{22} = \frac{i_2}{v_2}$</td>
<td>v_1 & i_2</td>
<td></td>
</tr>
</tbody>
</table>

$v_i=0$ means short the ports of two-port network on the i side. $i_i=0$ means open circuit the ports of two-port network on the i side.

Suat Ay (SP2008)