ECE 320
Homework
Ideal DC / DC Converters

From the text handout by Daniel Hart, do the following problems
6.1 What is the relationship between $\mathrm{Vo} / \mathrm{Vs}$ and the efficiency of the linear converter in section 6.1?

Input power is
$\mathrm{P}_{\mathrm{in}}=\mathrm{V}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{L}}$

Output power is

$$
\mathrm{P}_{\mathrm{out}}=\mathrm{V}_{\mathrm{o}} \cdot \mathrm{I}_{\mathrm{L}}
$$

Calculate efficiency

$$
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}
$$

Simplify the expression by dividing out the current $\mathrm{I}_{\mathrm{L}}$.

$$
\begin{aligned}
\eta & =\frac{\mathrm{V}_{\mathrm{O}} \cdot \mathrm{I}_{\mathrm{L}}}{\mathrm{~V}_{\mathrm{S}} \cdot \mathrm{I}_{\mathrm{L}}} \\
\eta & =\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{S}}}
\end{aligned}
$$

The energy efficiency is, ideally, equal to the voltage ratio. The energy efficiency can be no greater than the voltage ratio in practical linear regulator circuits.

Problem 6.2 A DC power supply must step down a 100 V source to 30 V . The output power is 100W.
a. Determine the efficiency of the converter of Fig 6.1 when it is used for this application.
b. How much energy is lost in the transistor in one year?
c. using the electric rate in your area, what is the cost of the energy loss for one year?
$\mathrm{V}_{\text {in }}:=100 \cdot \mathrm{~V}$
$\mathrm{V}_{\text {out }}:=30 \cdot \mathrm{~V}$
$\mathrm{P}_{\text {out }}:=100 \cdot \mathrm{~W}$
cents $:=1 \quad$ dollars $:=100 \cdot$ cents
a. Find the efficiency. First find the current from the power and voltage.
$\mathrm{I}_{\text {out }}:=\frac{\mathrm{P}_{\text {out }}}{\mathrm{V}_{\text {out }}} \quad \mathrm{I}_{\text {out }}=3.333 \mathrm{~A}$

From the figure we see that the circuit is just a series circuit. The output current is the same as the input current.

$$
\mathrm{I}_{\mathrm{in}}:=\mathrm{I}_{\text {out }} \quad \mathrm{P}_{\mathrm{in}}:=\mathrm{V}_{\mathrm{in}} \cdot \mathrm{I}_{\mathrm{in}}
$$

Efficiency is power out / power in:
$\eta:=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}} \quad \eta=0.3$
b. Energy loss in a year is found:

$$
\begin{array}{clc}
\mathrm{T}:=1 \cdot \mathrm{yr} & \mathrm{~T}=8766 \cdot \mathrm{hr} & \mathrm{P}_{\text {in }}=333.333 \mathrm{~W} \quad \mathrm{P}_{\text {out }}=100 \mathrm{~W} \\
\mathrm{~W}_{\text {loss }}:=\left(\mathrm{P}_{\text {in }}-\mathrm{P}_{\text {out }}\right) \cdot \mathrm{T} & \mathrm{~W}_{\text {loss }}=7.363 \times 10^{9} \mathrm{~J} \quad \mathrm{~W}_{\text {loss }}=2045 \cdot \mathrm{~kW} \cdot \mathrm{hr}
\end{array}
$$

c. Cost here is 7.2 cents per kwhr.

$$
\begin{array}{ll}
\mathrm{C}_{\text {cost }}:=\mathrm{W}_{\text {loss }} \cdot\left(7.2 \cdot \frac{\text { cents }}{\mathrm{kW} \cdot \mathrm{hr}}\right) \quad \mathrm{C}_{\text {cost }}=1.473 \times 10^{4} \cdot \text { cents } \\
\mathrm{C}_{\text {cost }}=147.27 \cdot \text { dollars } &
\end{array}
$$

Problem 6.7 A buck converter has an input of 60 V and an output fo 25 V . The load resistor is $9 \Omega$, the switching frequency is $20-\mathrm{kHz}, \mathrm{L}=1 \mathrm{mH}$, and $\mathrm{C}=200 \mu \mathrm{~F}$.
a. Determine the duty ratio.
b. Determine the average, peak, and rms inductor current.
c. Determine the average source current.
d. Determine the peak and average diode current.

$$
\mu \mathrm{s}:=10^{-6} \cdot \mathrm{sec}
$$

$\mathrm{V}_{\mathrm{S}}:=60 \cdot \mathrm{~V} \quad \mathrm{~V}_{0}:=25 \cdot \mathrm{~V} \quad \mathrm{R}_{0}:=9 \cdot \Omega$
$\mathrm{f}_{\mathrm{S}}:=20 \cdot \mathrm{kHz}$
$\mathrm{L}:=1 \cdot \mathrm{mH}$
$\underset{M}{C}:=200 \cdot \mu \mathrm{~F}$
a. Determine the duty ratio. $\quad \mathrm{T}_{\mathrm{S}}:=\frac{1}{\mathrm{f}_{\mathrm{S}}}=50 \cdot \mu \mathrm{~s}$
$\mathrm{D}:=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=0.417$
b. Determine the average, peak, and rms inductor current.

$$
\mathrm{I}_{0}:=\frac{\mathrm{V}_{0}}{\mathrm{R}_{0}}=2.778 \mathrm{~A}
$$

Because the capacitor has no average current, the inductor average current is the same as the output average current.
$\mathrm{I}_{\text {Lave }}:=\mathrm{I}_{0}=2.778 \mathrm{~A}$
The change in inductor current is found from the inductor's integral relationship:
$\Delta \mathrm{I}_{\mathrm{L}}:=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{0}}{\mathrm{~L}} \cdot \mathrm{D} \cdot \mathrm{T}_{\mathrm{S}}=0.729 \mathrm{~A}$
Calculating the max and min values,

$$
\mathrm{I}_{\text {Lmax }}:=\mathrm{I}_{\text {Lave }}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=3.142 \mathrm{~A} \quad \mathrm{I}_{\text {Lmin }}:=\mathrm{I}_{\text {Lave }}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=2.413 \mathrm{~A}
$$

c. Determine the average source current.

$$
\mathrm{I}_{\text {Save }}:=\mathrm{I}_{0} \cdot \mathrm{D}=1.157 \mathrm{~A}
$$

It is also possible to do this from energy conservation. Ideally, there are no losses in the converter.
$\mathrm{P}_{0}:=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}_{0}}=69.444 \mathrm{~W}$
$\mathrm{P}_{\mathrm{S}}:=\mathrm{P}_{0}=69.444 \mathrm{~W}$
$\mathrm{I}_{\text {Saval }}:=\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=1.157 \mathrm{~A}$
d. Determine the peak and average diode current.

$$
\begin{aligned}
& \mathrm{I}_{\text {Dpk }}:=\mathrm{I}_{\text {Lmax }}=3.142 \mathrm{~A} \\
& \mathrm{I}_{\text {Dave }}:=\mathrm{I}_{\text {Lave }} \cdot(1-\mathrm{D})=1.62 \mathrm{~A}
\end{aligned}
$$

Problem 6.13 Design a buck converter which has an output of 12 V from an input of 18 V . The output power is 10 W . The output voltage ripple must be no more than 100 mV peak to peak. Specify the duty ratio, switching frequency, and inductor and capacitor values. Design for continuous inductor current. Assume ideal conditions.
$\mathrm{V}_{0 \mathrm{v}}:=12 \cdot \mathrm{~V} \quad \underset{\mathrm{msi}}{\mathrm{V}}:=18 \cdot \mathrm{~V} \quad \mathrm{Pai}_{0}:=10 \cdot \mathrm{~W} \quad \Delta \mathrm{~V}_{0}:=100 \cdot \mathrm{mV}$
The duty ratio is the ratio of the voltages:
$\mathrm{D}:=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=0.667$
Calculate the output resistance from the given information.
$\mathrm{R}_{\mathrm{av}}=\frac{\mathrm{V}_{0}{ }^{2}}{\mathrm{P}_{0}}=14.4 \Omega$
Specify a switching frequency. This is normally set by the expected power losses in the switch. Here, we will choose a common value,

$$
\text { fivi }_{\mathrm{f}}:=500 \cdot \mathrm{kHz}
$$

Using equation 6-26 in the text handout, we find the minimum inductance for continuous inductor current is ,

$$
\mathrm{L}_{\text {min }}:=\frac{\mathrm{D} \cdot(1-\mathrm{D})^{2} \cdot \mathrm{R}_{0}}{2 \mathrm{f}_{\mathrm{S}}}=1.067 \cdot \mu \mathrm{H}
$$

We see the output ripple is defined as

$$
\frac{\Delta \mathrm{V}_{0}}{\mathrm{~V}_{0}}=\frac{1-\mathrm{D}}{8 \cdot \mathrm{~L} \cdot \mathrm{C}_{0} \cdot \mathrm{f}_{\mathrm{s}}{ }^{2}}
$$

Rearrange this to allow us to solve for the remaining unknown, the capacitance,

$$
\mathrm{C}_{0}:=\frac{(1-\mathrm{D}) \cdot \mathrm{V}_{0}}{8 \cdot \mathrm{~L}_{\mathrm{min}} \cdot \mathrm{f}_{\mathrm{s}}^{2} \cdot \Delta \mathrm{~V}_{0}}=18.75 \cdot \mu \mathrm{~F}
$$

Problem 6.15 The boost converter of Fig 6-6 has the following parameters: Vs=20V, D=0.6, $R=12.5 \Omega, L=65 \mu H, C=200 \mu F$, and switching frequency $=40 \mathrm{kHz}$.
a. Determine the output voltage.
b. Determine the average, maximum, and minimum inductor current.
c. Determine the output voltage ripple.
d. Dermine the average current in the diode.
$\underset{\text { Mss }}{\mathrm{V}}:=20 \cdot \mathrm{~V} \quad \underset{\mathrm{MN}}{\mathrm{D}}:=0.60 \quad \underset{\mathrm{mbv}}{\mathrm{R}}:=12.5 \cdot \Omega \quad \underset{\mathrm{Mv}}{\mathrm{L}}:=65 \cdot \mu \mathrm{H} \quad \underset{\text { MQv: }}{\mathrm{C}}:=200 \cdot \mu \mathrm{~F} \quad \underset{\text { Ns }}{\mathrm{f}}:=40 \cdot \mathrm{kHz}$
a. Determine the output voltage.

$$
\mathrm{T}_{\mathrm{MS}}:=\frac{1}{\mathrm{f}_{\mathrm{S}}}=25 \cdot \mu \mathrm{~s}
$$

$\mathrm{V}_{\mathrm{M}}:=\mathrm{V}_{\mathrm{s}} \cdot \frac{1}{1-\mathrm{D}}=50 \mathrm{~V}$
b. Determine the average, maximum, and minimum inductor current.
$\mathrm{P}_{\mathrm{O}}:=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}_{0}}=200 \mathrm{~W}$
$\mathrm{P}_{\mathrm{MSV}}:=\mathrm{P}_{0}=200 \mathrm{~W}$
$\mathrm{I}_{\mathrm{S}}:=\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=10 \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}:=\mathrm{I}_{\mathrm{S}}=10 \mathrm{~A}$
$\Delta \mathrm{I}_{\Delta \Lambda}:=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{L}} \cdot \mathrm{D} \cdot \mathrm{T}_{\mathrm{S}}=4.615 \mathrm{~A}$
$\mathrm{I}_{\text {danax }}:=\mathrm{I}_{\mathrm{L}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=12.308 \mathrm{~A} \quad \mathrm{I}_{\text {dain }}:=\mathrm{I}_{\mathrm{L}}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=7.692 \mathrm{~A}$
c. Determine the output voltage ripple.

We see the output ripple is defined as

$$
\Delta \mathrm{V}_{0}:=\frac{\mathrm{D} \cdot \mathrm{~V}_{0}}{\mathrm{R}_{0} \cdot \mathrm{C}_{0} \cdot \mathrm{f}_{\mathrm{s}}}=300 \cdot \mathrm{mV}
$$

We can also express this a per unit ripple.

$$
\frac{\Delta \mathrm{V}_{0}}{\mathrm{~V}_{0}}=0.006
$$

d. Dermine the average current in the diode.

$$
\mathrm{I}_{\text {Nawe }}:=\mathrm{I}_{\mathrm{L}} \cdot(1-\mathrm{D})=4 \mathrm{~A}
$$

Problem 6.17 For the boost converer of Problem 6-15, sketch the inductor and capacitor currents. Determine the rms values of these currents.




Problem 6.20 The buck-boost converter of Fig 6-8 has the following parameters: Vs=12V, $D=0.6, R=10 \Omega, L=50 \mu H, C=200 \mu F$, and switching frequency $=40 \mathrm{kHz}$.
a. Determine the output voltage.
b. Determine the average, maximum, and mimum inductor currents.
c. Determine the output voltage ripple.

$$
\mathrm{V}_{\text {Msi }}:=12 \cdot \mathrm{~V} \quad \mathrm{D}:=0.60 \quad \underset{\mathrm{MQv}}{\mathrm{R}}:=10 \cdot \Omega \quad \mathrm{~L}:=50 \cdot \mu \mathrm{H} \quad \underset{\text { MQv }}{\mathrm{C}}:=200 \cdot \mu \mathrm{~F} \quad \mathrm{f}_{\text {Nvi }}:=40 \cdot \mathrm{kHz}
$$

a. Determine the output voltage.

$$
\mathrm{T}_{\mathrm{MS}}:=\frac{1}{\mathrm{f}_{\mathrm{S}}}=25 \cdot \mu \mathrm{~s}
$$

$\mathrm{V}_{\mathrm{QR}}:=\frac{\mathrm{D}}{1-\mathrm{D}} \cdot \mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$
b. Determine the average, maximum, and mimum inductor currents.
$\mathrm{I}_{\text {dawei }}:=\frac{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{D}}{\mathrm{R}_{0} \cdot(1-\mathrm{D})^{2}}=4.5 \mathrm{~A}$
Another way to do this is to calculate the output and input power, then calculate the input current and, from there, calculate the inductor current.

$$
\mathrm{P}_{\mathrm{M}}:=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}_{0}}=32.4 \mathrm{~W} \quad \underset{\mathrm{Mbv}}{\mathrm{P}}:=\mathrm{P}_{0}=32.4 \mathrm{~W} \quad \mathrm{I}_{\mathrm{NS}}:=\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{S}}}=2.7 \mathrm{~A} \quad \mathrm{I}_{\text {mavei }}:=\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{D}}=4.5 \mathrm{~A}
$$

The change in inductor current is

$$
\Delta \mathrm{I}_{\Delta x}:=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~L}} \cdot \mathrm{D} \cdot \mathrm{~T}_{\mathrm{S}}=3.6 \mathrm{~A}
$$

Max and min inductor currents are

$$
\mathrm{I}_{\text {duanax }}:=\mathrm{I}_{\text {Lave }}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=6.3 \mathrm{~A} \quad \mathrm{I}_{\text {dananv }}:=\mathrm{I}_{\text {Lave }}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=2.7 \mathrm{~A}
$$

c. Determine the output voltage ripple.
$\Delta \mathrm{V}_{0}:=\mathrm{V}_{0} \cdot\left(\frac{\mathrm{D}}{\mathrm{R}_{0} \cdot \mathrm{C}_{0} \cdot \mathrm{f}_{\mathrm{s}}}\right)=0.135 \mathrm{~V}$
Per unit ripple is
$\frac{\Delta \mathrm{V}_{0}}{\mathrm{~V}_{0}}=0.0075$

