ECE 404-TD / 504-TD

ST: T&D APPLICATIONS OF VOLTAGE SOURCE CONVERTERS

SESSION no. 20

Due: Monday 4 March

- 1. For a four-level NPC converter, find all the available switching states. Let the total dc link voltage be 8.0kV.
 - a. List the switching states in a table showing the voltage across each switch and the components of a space vector representation thereof. You may work in a per unit system of your choice if you prefer.
 - b. Create a plot similar to what was presented in class. Plot all the vectors. Label each vector in the first hextant; that's plenty. You can check your plot using Prof. Corzine's reference.
- 2. Find and plot one cycle of the dc current that accompanies a <u>three-level</u> space vector PWM that yields a vector of $0.60\,V_{dc}\,\angle\,40^\circ$ Volts. The load current is 200 Amps with a power factor of 1.00. A number for V_{dc} is not necessary, but if you want one, make one up and declare it.
- 3. For a four-level NPC, apply sine-triangle modulation at a 5kHz:50Hz frequency ratio between triangle and sine wave frequencies. Set the sine wave's amplitude at ¾ of the sum of the applied triangle wave. Let the dc link voltage be 8kV.
 - a. Plot the triangle waves superimposed on a three phase sine wave.
 - b. Show one (sine) cycle of the resulting pulse width modulation.
 - c. Show a harmonic spectrum that reveals at least the first half dozen nonzero voltage harmonics.
- 4. For a Multimodal Multilevel Converter (MMC) with four-modules in each leg and balanced capacitor voltages of 2kV for each switch and diode,
 - a. Determine the voltage stair step waveform with the same switching losses as the NPC convertor of problem 3. Use a fundamental output frequency of 50 Hertz.
 - b. Identify the fundamental and lowest nonzero harmonic output line-to-neutral voltage, magnitude and frequency. Assume the inductors have no voltage drop.
 - c. For a machine load that is modeled as a 50 Hz voltage source of the same amplitude as the fundamental component of the terminal voltage, but lagging three degrees, behind a reactance of 0.35 Ohms at 50 Hz, find the fundamental current and the lowest nonzero current harmonic, magnitude and frequency.

ECE 404 / 504

T & D Applications of Voltage Sourced Converters

Lesson 20

NO CLASS Lesson 24; Exam compensatory time

Induction Machine...

2 complete three phase sets of windings give us 4 poles
Squirrel cage

Wound rotor

Advantages

- Ruggedness
- Variable speed
- Maintenance
- Efficiency
- Low speed performance
- Size and weight
- Protection

Specific advantages:

- A stable, useful
 performance AS A
 GENERATOR with a slight
 overspeed
- Ability to use both stator and rotor as higher bandwidth ports for control, energy I/O, and protection.

Induction Motor Example

$$j := \sqrt{-1}$$

$$R_1 := 0.02$$
 $R_2 := 0.025$

$$R_2 := 0.025$$

$$lagging := 1$$

$$X_1 := 0.06$$
 $X_2 := 0.04$ $X_m := 3.5$

$$X_2 := 0.04$$

$$X_{\rm m} := 3.5$$

$$V_1 := 1.00$$
 $\omega_s := 1.00$

$$\omega_{\rm S} := 1.00$$

Find current input.

$$s := 0.025$$

$$\frac{V_{m} - V_{1}}{R_{1} + j \cdot X_{1}} + \frac{V_{m}}{j \cdot X_{m}} + \frac{V_{m}}{\frac{R_{2}}{s} + j \cdot X_{2}} = 0$$

This V_m is the air gap voltage.

$$V_{m} := \frac{\left(\frac{V_{1}}{R_{1} + j \cdot X_{1}}\right)}{\frac{1}{R_{1} + j \cdot X_{1}} + \frac{1}{j \cdot X_{m}} + \frac{R_{2}}{s} + j \cdot X_{2}} = 0.964 - 0.051i$$

Input Current is

$$I_1 := \frac{V_1 - V_m}{R_1 + j \cdot X_1} = 0.951 - 0.288i$$
 $\left| I_1 \right| = 0.994$
$$arg(I_1) = -16.852 \cdot deg$$

Find torque.

$$I_2 := \frac{V_m}{\frac{R_2}{s} + j \cdot X_2} = 0.96 - 0.09i$$

torque :=
$$\frac{\left(\left|I_2\right|\right)^2 \cdot R_2}{s \cdot \omega_s} = 0.93$$

Power in, power out, and efficiency.

$$P_{in} := Re\left(V_1 \cdot \overline{I_1}\right) = 0.951$$

$$P_{out} := (|I_2|)^2 \cdot R_2 \cdot \frac{(1-s)}{s} = 0.907$$

$$\eta := \frac{P_{out}}{P_{in}} = 95.3 \cdot \%$$

Power Factor

$$pf := \frac{P_{in}}{\left|V_1\right| \cdot \left|\overline{I_1}\right|} = 0.957 \cdot \text{lagging}$$

Now let's generalize the equations over a range of slip or rotor speed.

$$\underbrace{ \frac{V_1}{R_1 + j \cdot X_1} }_{ \underbrace{R_1 + j \cdot X_1}} = \underbrace{ \frac{1}{R_1 + j \cdot X_1} + \frac{1}{j \cdot X_m} + \frac{1}{\frac{R_2}{\text{slip}} + j \cdot X_2} }_{}$$

$$\underline{I}_{M}(slip) := \frac{V_1 - V_m(slip)}{R_1 + j \cdot X_1}$$

$$\omega(\text{slip}) := \omega_{S} \cdot (1 - \text{slip})$$
 Rotor Speed

Find current input for a range of slip...

...and rotor speed

torque

$$\underline{\underline{L_2}}(slip) := \frac{V_m(slip)}{\frac{R_2}{slip} + j \cdot X_2}$$

$$torque(slip) := \frac{\left(\left|I_2(slip)\right|\right)^2 \cdot R_2}{slip \cdot \omega_s}$$

Power in, power out, and efficiency

$$\underline{\underline{P_i}}(slip) := Re\left(V_1 \cdot \overline{I_1(slip)}\right)$$

$$\underbrace{P_{\text{out}}(\text{slip}) \coloneqq \left(\left| I_2(\text{slip}) \right| \right)^2 \cdot R_2 \cdot \frac{(1 - \text{slip})}{\text{slip}}}_{}$$

$$\mathbf{M}(\text{slip}) := \left| \begin{array}{l} \frac{P_{out}(\text{slip})}{P_{in}(\text{slip})} & \text{if slip} > 0 \\ \\ \frac{P_{in}(\text{slip})}{P_{out}(\text{slip})} & \text{if slip} < 0 \end{array} \right|$$

Power factor

$$\underbrace{pf}_{\text{(slip)}} := \frac{\left| P_{\text{in}}(\text{slip}) \right|}{\left| V_1 \right| \cdot \left| I_1(\text{slip}) \right|}$$

