ECE 404-TD / 504-TD

ST: T&D APPLICATIONS OF VOLTAGE SOURCE CONVERTERS

SESSION no. 32
I. Averaged Converter model in PSCAD/EMTDC

- Switching Power circuit

ECE 404/504
T&D Applications of Voltage Sourced Converters

Session 3 [l, Page 1/4
Spring 2013
- Gate Control and Modulation

![Diagram of gate control and modulation system]
• Averaged Model: Power Circuit

\[R_0 \]
\[V_{pos_{av}} \]
\[V_{neg_{av}} \]

\[IP \]
\[V_{at} \]
\[I_{L_{av}} \]

\[0.00069 \text{ [H]} \]
\[0.00588 \text{ [ohm]} \]

\[V_{at} \]

\[DC \text{ source} \]
\[\text{external input} \]
- Averaged Model: Control Equations

\[v_t = m \frac{v_{dc}}{2} \]

\[i_p = \frac{(1 + m)}{2} i_{out} \]

\[i'_n = \frac{(1 - m)}{2} i_{out} \]

- Inverter Case: Change sources and modulation function
- Closed loop control (DC-DC first)
 \(\rightarrow\) Add control measurements

\[\text{Averaged Model}\]

\(\text{Control circuit}\)

\[\text{PI}\]

\[K_i = 1.176, \quad K_p = 0.138\]
Input Filtering and Phase Correction

Synchronization

- Detect zero crossing of input fundamental frequency waveform
 - Possibly delay by 90 degree to get peak
 - Proper delay requires knowledge of actual system frequency (not the ideal value)
 - Inputs include phase error (from measuring circuit and system drift), and base frequency
- Note use of “analog” signals, could do this digitally as well