\[V_{SC} = 0 \quad \text{Blocks} \]

\[V_{SC} = V_S \geq 2.2 \text{V} \quad \text{Conduct} \]
\[
\begin{aligned}
\frac{x}{5} &= \frac{15}{-5} \\
5x &= 25 \\
10x &= 50
\end{aligned}
\]
Getting ATP:

- Available in ECE dept labs on campus
- Request a license through http://www.emtp.org
 » Once you have confirmation they will send you instructions for downloading from a secure server
 » Or, once verified, I can give you access to a zip file with relevant files

Installing ATP:

- Minimum to Download
 » Mingw version of ATP
 » ATPDraw -- latest version or latest patch
 - Presently Atpdrawing57.zip
 » PlotXY
- Option: ATP Easy Installer
 » Download from secure sites in Japan
Getting ATP:

- Available in ECE dept labs on campus
- Request a license through http://www.emtp.org
 » Once you have confirmation they will send you instructions for downloading from a secure server
 » Or, once verified, I can give you access to a zip file with relevant files

Installing ATP:

- Minimum to Download
 » Mingw version of ATP
 » ATPDraw -- latest version or latest patch
 - Presently Attdraw57.zip
 » PlotXY
- Option: ATP Easy Installer
 » Download from secure sites in Japan
Installing ATPDraw

- Installation is fairly easy
- Default installation path "Program Files" to avoid this
- The space in the file name can create problems running ATP from ATPDraw
 - Install it somewhere else. I normally install in "C:\tools\prog\ATPDraw"
- Install program may create shortcut in the start menu, but not very cleanly

Running ATP from ATPDraw

- Still need a copy of ATP
- Licensed users can get other versions
- Follow installation directions for yours
- ATPDraw calls ATP from a DOS Batch file (extension *.bat)
 - For example, I call it "RUNATP.BAT"
- Passes full path to file when calls ATP
Sample Batch File

- The following batch file is for Ming32 ATP

  ```
  SET GNUDIR=C:\tools\prog\atp\n
  SET PATH=C:\tools\prog\atp;"%PATH%"

  tpbig both %1 s -r
  ```

 The first line defines variable GNUDIR

 » Different ATP versions use different name
 » Sets program working environment
 » The final "\" is important

Sample Batch File (cont.)

- Second line adds executable to your search path (not needed if set this at boot time)
- The next line calls ATP itself

  ```
  tpbig both %1 s -R
  ```

 » "both" tells program to write error messages to screen and to file (useful for debugging)
 » Could also set "disk" to only do disk file or leave blank for no message
 » First "%1" is input data file from ATPDraw
Sample Batch File (cont.)

- The "s" is to create appropriate output file.
- "-R" tells ATP overwrite existing output file if one exists
- This bat file will let you run ATP, and all of the support program (line constants etc)

Editing "startup"

- ATP reads a file called "startup"
 - Resides in same directory as tpbig
 - Sets variables for the program
- A few suggested changes from default
 - Change PL4 file format to work with PlotXY
 - NOBLAN set to 0 {ignore blank lines}
 - NEWPL4 set to 2 {won't work with Analyzer}
Setting Up ATPDraw

- Open up ATPDraw
- Select: "Tools" pull down menu
- Select: "Options..."
- Choose "Preferences" tab
 » You select a text editor, or use Notepad (default)
 » "ATP" is where you set path to your batch file
- Armafit: which we won't cover in this course

ATPDraw "Preferences"
Further Settings

- The "Files&Folders" tab settings are ok
- However, you do want changes in the View/ATP tab
 - Select "Edit settings" tab
 - You may want to change some of the default settings. However, you can change any of these for a specific data file

Simulation Settings

- Default time step (deltaT) is very small
- Default run time short
- Xopt and Copt ok
- Select "Power Frequency"
 - Reset to 60 Hz from 50Hz
 - Can mess up some sources
Saving New Settings

- The “Save” or “Apply” buttons aren’t sufficient to permanently save change
- Also choose: Tools --> Save Options
- These are all saved into a file called ATPDraw.ini
 - Typically saved in user’s settings
 - Could put copy in the directory with ATPDraw.exe

Example 1

- Try to run example case to make sure program installed and set up correctly
ATP Menu

- A new pulldown menu is now available at the top of the window, called "ATP"

ATP Menu

- Settings is changes deltaT etc. for a given case
- "Make File As" generates ATP data file from drawing
- Run ATP calls your bat file
- Each "Edit" calls text editor
- Make Names, makes node names for drawing
UI

Edit Commands

- Allows you to set additional commands
- Run other ATP versions
 - On Current ATP drawing
 - On Selected File
- Run plot programs
 - On Current PL4
- Use "Update" to set

UI

Saving New Settings

- The "Update" buttons isn't sufficient to save for next time
- All choose: Tools --> Save Options
Running an ATP File

- Now we run the example case opened earlier
- Always a multi-step process
 - 1) Make file to create ATP data file from drawing.
 - Must do this every time you change drawing
 - Default is to place this in "ATP" subdirectory under
 ATPDraw home directory (with extension *.ATP)
 - Can edit this file with "Edit ATP-File" option (not saved
to drawing file)
 - 2) Run your case
 - 3) Call plotting program

Running an ATP File

- The drawing file saved separately (save often)
- Remember to save your changes often
- Default is to save this in the "Project"
 subdirectory under ATPDraw
- Note that if want to save elsewhere, need to
 select a new home for both ADP and ATP files
 - PL4 and *.lis (or *.out depending on version) are
 written to same directory at *.ATP file
 - Need to cleanup directories periodically
Making You Own File

- Open a new drawing (from File menu or from icon)
- Can get the component menu by right clicking mouse in the drawing screen
- Each item lets you select components to create
- More later....

Transient Analysis of Control Systems (TACS)

- Introduced in EMTP in 1976
- Developed to model controls for HVdc converters (Pacific Intertie)
- Model interactions between system transients and control systems
- Each variant of EMTP has its own variant
- ATP has two: TACS and Models
What TACS can do

- Model control systems
 - Generator excitation and governor control
 - Control loops for power electronic converters
 - Firing circuit for power electronics
 - Relay algorithms

What TACS can do

- Monitor and post-process network variables
 - Analog and digital filters
 - RMS voltages and currents
 - Calculate P and Q
 - Compute motor/generator torque or flux
 - Reference frame transformations
What TACS can do

- Simulate mechanical/electromechanical
- Non-linear responses
- Create models for devices without built-in models – for example, arc resistances
- Create harmonic sources
- Variable frequency sources

TACS Relationship to Network Solution

- Control system models solved separate from network
 » Different equation formats
 » First network then TACS in each time step
 » Leads to on step time delay

Intro to ATP and ATPDraw 51 Spring 2013
Intro to ATP and ATPDraw 52 Spring 2013
General Format

- TACS design from point of view of reproducing
 Laplace domain block diagram
 » Converted to difference equations
 » Arbitrary connections of blocks
- Signal and variable names limited to 6 characters
- Can implement digital controls
- Some limited FORTRAN expressions

TACS and ATPDraw

- ATPDraw Interface for TACS
 » Not as nice as circuit interface, but much improved
- Not essentially to always draw connecting lines
 » Use the same variable names instead
 » Will generate a warning message about duplicate
 names when first run ATP file
- Several of the example cases shipped with
 ATPDraw have TACS modelling