Utility SCADA & Automation

- Chris Dyer, P.E.
- BSEE University of Idaho, 1997
- POWER Engineers, Inc., SCADA and Analytical Services (SAS) Department Manager, Boise, ID
- SCADA & Automation Engineer for 17 years
What is SCADA?

- S.C.A.D.A
 - Supervisory
 - Control
 - And
 - Data
 - Acquisition
What is SCADA?

• Transmitting and receiving logic or data (telemetry)
• Monitoring of processes
• Monitoring of equipment health
• Remote control
Why SCADA?

• Ability to manage large systems efficiently
• Area control and balance
• System reconfiguration
• Automation
 – Load shedding
 – Load transfer
 – Reactive compensation
What data?

- Breaker status
- Analog data
 - Voltage
 - Current
 - Real/reactive power
 - Load tap changer position
- Critical apparatus alarms
- Controls

University of Idaho
SCADA Evolution – Early History

• Pre-SCADA
 – Limited Technology
 – Local control limiting system size
 – Manpower required
 – Coordination became difficult
 – Slow response
 – Conservative operation
 – Longer, more frequent outages
SCADA Evolution – Early History

• “Homegrown” custom
• Proprietary systems
 – Distributed
 – Energy Management Systems (EMS)
 – Remote Terminal Units (RTU)
• Discrete hardwired components
 – Auxiliary contacts, DC inputs, AC current/voltage transducers with A/D converter
SCADA Evolution – Recent History

- Open (non-proprietary) RTUs
- Local Human Machine Interface (HMI)
 - Traditional annunciator/mimic
 - PC based
 - Web based
- Communication Infrastructure owned or leased
- EMS & associated systems
- Data repository
SCADA Evolution - Communications

- 1200 baud “Bell 202” standard lease-lines
 - Low bandwidth, high availability
- Traditional serial (RS232/RS485)
- Ethernet
- Microwave (and other RF communications)
- Owned Fiber Optic Networks (OPGW)
- Leased broadband circuits
SCADA Evolution - Protocols

- Set of rules defining the exchange of information utilizing digital data transmission between intelligent devices
- Software communication “languages”
- Hardware “handshaking”
 - RTS/CTS/DSR/DTR
SCADA Evolution - Protocols

- Proprietary based on manufacturer
- MODBUS industrial communications
- DNP V3.00 developed as an “open” protocol
 - Heralded in an era of “interoperability”
- UCA
- IEC-61850
 - GOOSE
 - MMS
 - Sampled Values
OSI Seven Layer Model

The 7 Layers of OSI

Transmit

Data

User

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Receive

Data

Physical Link
SCADA Evolution – Modern Era

- IED (Intelligent Electronic Device)
- Digital microprocessor relays
- Additional microprocessor based IEDs
- Moore’s Law as applied to SCADA
- Communications and database additions
SCADA Evolution – Modern Era

• Communications systems advancement
 – Broadband technologies
 – Multiplexing
 – Interoperability
• Bandwidth capabilities
• Data analytics
SCADA = Visibility
SCADA = Visibility
SCADA Evolution – The Future

• Where do we go from here?
 – “Smart Grid”
 – Data analytics & Condition based maintenance
 – IEC-61850
 – Synchrophasors
 – Cybersecurity
The Smart Grid

- Many definitions driven by marketing
- Demand side data for customer use ("smart" meters)
- Distribution Automation
 - Load transfer
 - Load shedding/recovery
 - Volt/VAR control
The Smart Grid

• Distributed Generation
 – Distribution system design
 – Protection & stability

• Digital Substation
 – “Fly by wire”
 – Networked
 – High data availability
 – Redundancy
Condition Based Maintenance

• Definition
 – Real time monitoring of apparatus
 – Evaluation of data
 – Notification
 – Automated correction

• Traditional methods
 – Time based
 – Performance based (failure)
Condition Based Monitoring

- **Example: Power Transformer**
 - High cost, long lead
 - IED monitoring of:
 - Dissolved gases
 - Partial discharge
 - Cooling fan operation
 - Operation & stress
 - Trend analysis
 - “Uprating”
Condition Based Monitoring

• Benefits
 – Equipment expenditures
 – Labor & resource expenditures
 – Operational data
 – Event analysis
International Electrotechnical Commission
Set of standards
– System & project management
– Engineering tools
– Data modeling
– Hardware requirements
– Product lifecycle
– Communication structure
IEC-61850 Cont’d

• Station Bus
 – SCADA Protocols (MMS)
 – Protection Protocols (GOOSE)

• Process bus
 – Measured or Sampled Values
Object oriented standard for modeling substation and apparatus

Example:

- Logic Node: Circuit Breaker (XCBR)
 - Data Object: Position (Pos)
 » Data Attributes:
 • Control type, time
 • Status
 • Operations counter
 • Quality
 • Time stamp
IEC-61850
IEC-61850

- Factors impeding adoption
 - Room for interpretation of standards
 - Complex with integration of other standards
 - Integration of different skills sets
 - Limited interoperability
 - Brownfield site complexity
 - Training
 - Testing & Commissioning
 - Documentation (logic diagrams, etc)
 - Trust & confidence

- Technology and standardization will drive the implementation
Synchrophasors

- High frequency data sampling
- Time stamped voltage & current phasor measurements
- Synchronized utilizing GPS
- Instability detection
- Post mortem sequence of events
- Potential to allow dynamic power flow monitoring
Micro-grids

• What is a Micro-grid?
• What does a Micro-grid consist of?
• How is the operation different?
• Special considerations
 – Communications
 – SCADA
Cybersecurity – The Threat

• Stuxnet virus – the danger is real
• NERC CIP-14
 – Central California physical security attack
• Recent hacks
 – Retail industry (Target)
 – Sony Studios
 – Federal government (OPM)
• Is your local utility next??

University of Idaho
Cybersecurity – Response

- NERC (North American Electric Reliability Corporation)
- CIP (Critical Infrastructure Protection)
- Reliability & security
- Critical Assets Definition
- Compliance & penalties
Cybersecurity – Actions

• Policies & procedures
• Training
• Situational awareness
• Configuration management
• Monitor & detection
• Response and recovery
Substation of the future??
Questions?

- Thanks for your attention.
 – Chris