1. Consider the balanced three-phase system shown in Figure 1. $V_{A N}=132.79 \angle 0^{\circ} \mathrm{kV}$, $V_{B N}=132.79 \angle-120^{\circ} \mathrm{kV}, V_{C N}=132.79 \angle+120^{\circ} \mathrm{kV}$. Transmission line impedance of each phase is $Z_{\text {line }}=j 3.0 \Omega$. The load is Y connected and the load impedance of each phase is $Z_{\text {load }}=80+j 60 \Omega$.

Figure 1
(a) (1 points) Determine voltage $V_{A B}$ and currents $I_{A}, I_{A^{\prime}}, I_{B^{\prime}}, I_{C^{\prime}}$.
(b) (1 points) Determine voltages $V_{A^{\prime}} N, V_{B^{\prime} N}, V_{C^{\prime} N}$, and $V_{A^{\prime} B^{\prime}}$
(c) (1 points) Determine the complex power consumed by phase A load ($S_{\text {loadA }}$), phase B load ($S_{\text {loadB }}$), and phase C load ($S_{\text {loadC }}$). Determine the total complex power consumed by the three phases of load $\left(S_{3 \phi}\right)$.
2. For the system as shown in Figure $1, V_{A N}=132.79 \angle 50^{\circ} \mathrm{kV}, V_{B N}=132.79 \angle-70^{\circ} \mathrm{kV}$, $V_{C N}=132.79 \angle \mathbf{- 1 9 0}{ }^{\circ} \mathrm{kV}$. Transmission line impedance of each phase is $Z_{\text {line }}=j 3.0 \Omega$. The load is Y connected and the load impedance of each phase is $Z_{\text {load }}=80+j 60 \Omega$.
(a) (2 points) Determine $V_{A B}, V_{A^{\prime}{ }^{\prime},}, V_{A^{\prime} B^{\prime}}, I_{A^{\prime}}, S_{\text {loadA }}, S_{\text {loadB }}, S_{\text {load } C}$, and $S_{3 \phi}$
(b) (1 points) Compare the results of $V_{A B}, V_{A^{\prime} N}, V_{A^{\prime} B^{\prime}}, I_{A^{\prime}}, S_{\text {loadA }}, S_{\text {loadB }}, S_{\text {load } C}$, and $S_{3 \phi}$ to the values obtained in problem 1 , what values have changed? What values stay the same?
3. Consider the balanced three-phase system shown in Figure 1. $V_{A N, p u}=1.0 \angle 0^{\circ} \mathrm{pu}$, $V_{B N, p u}=1.0 \angle-120^{\circ} \mathrm{pu}, V_{C N, p u}=1.0 \angle+120^{\circ} \mathrm{pu}$. Transmission line impedance of each phase is $Z_{\text {line }, \text { pu }}=(j 3.0 \Omega) / Z_{\text {base }}$. The load is Y connected and the load impedance of each phase is $Z_{\text {load,pu }}=(80+j 60 \Omega) / Z_{\text {base }}$

Figure 2
(a) (1 points) Use $V_{l l, b}=230 \mathrm{kV}, V_{L N, b}=230 / \sqrt{3} \mathrm{kV}=132.79 \mathrm{kV}, S_{3 \phi, \mathrm{~b}}=100 \mathrm{MVA}, S_{\phi, \mathrm{b}}=$ 33.33 MVA, $I_{b a s e}=\frac{S_{\phi, b}}{V_{L N, b}}=\frac{S_{3 \phi, b}}{\sqrt{3} V_{l l, b}}, Z_{b a s e}=\frac{\left(V_{L N, b}\right)}{\left(\frac{S_{\phi, b}}{V_{L N, b}}\right)}=\frac{\left(V_{l l, b} / \sqrt{3}\right)}{\left(\frac{S_{3 \phi, b}}{\sqrt{3} V_{l l, b}}\right)}=\frac{V_{l l, b}^{2}}{S_{3 \phi, b}}$ to determine $I_{\text {base }}, Z_{\text {base }}, Z_{\text {line,pu }}$, and $Z_{\text {load,pu }}$. (Note that $I_{\text {base }}$ should have unit A, $Z_{\text {base }}$ should have unit Ω. $Z_{\text {line }}$ and $Z_{\text {load }}$ should have no unit because the Ω on the numerator and denominator are canceled out.)
(b) (2 points) Determine $V_{A^{\prime}{ }^{\prime}, p u}, I_{A^{\prime}, p u}$, and $S_{l o a d A, p u}$
(c) (1 points) Multiply line-to-neutral voltage $V_{A^{\prime} N, p u}$ by $V_{L N, b}$, multiply $I_{A^{\prime}, p u}$ by $I_{b a s e}$, and multiply $S_{l o a d A, p u}$ by $S_{\phi, \text {, }}$, to obtain their actual values. Compare the results with problem 1.

