1. Consider the balanced three-phase system shown in Figure 1. $V_{AN} = 132.79 \angle 0^{\circ} \text{kV}$, $V_{BN} = 132.79 \angle -120^{\circ} \text{kV}$, $V_{CN} = 132.79 \angle +120^{\circ} \text{kV}$. Transmission line impedance of **each phase** is $Z_{line} = j3.0 \Omega$. The load is Y connected and the load impedance of **each phase** is $Z_{load} = 80 + j60 \Omega$.

- (a) (1 points) Determine voltage V_{AB} and currents I_A , I_A , I_B , I_C .
- (b) (1 points) Determine voltages $V_{A'N}$, $V_{B'N}$, $V_{C'N}$, and $V_{A'B'}$
- (c) (1 points) Determine the complex power consumed by phase A load (S_{loadA}), phase B load (S_{loadB}), and phase C load (S_{loadC}). Determine the total complex power consumed by the three phases of load ($S_{3\phi}$).
- 2. For the system as shown in Figure 1, V_{AN} = 132.79∠50°kV, V_{BN} = 132.79∠-70°kV, V_{CN} = 132.79∠-190°kV. Transmission line impedance of each phase is Z_{line} = j3.0 Ω. The load is Y connected and the load impedance of each phase is Z_{load} = 80+j60 Ω.
 (a) (2 points) Determine V_{AB}, V_{A'N}, V_{A'B'}, I_{A'}, S_{loadA}, S_{loadB}, S_{loadC}, and S_{3φ}
 - (b) (1 points) Compare the results of V_{AB} , $V_{A'N}$, $V_{A'B'}$, $I_{A'}$, S_{loadA} , S_{loadB} , S_{loadC} , and $S_{3\phi}$ to the values obtained in problem 1, what values have changed? What values stay the same?

ECE 420 Homework#3

3. Consider the balanced three-phase system shown in Figure 1. $V_{AN,pu} = 1.0 \angle 0^{\circ}$ pu, $V_{BN,pu} = 1.0 \angle -120^{\circ}$ pu, $V_{CN,pu} = 1.0 \angle +120^{\circ}$ pu. Transmission line impedance of **each phase** is $Z_{line,pu} = (j3.0 \ \Omega)/Z_{base}$. The load is Y connected and the load impedance of **each phase** is $Z_{load,pu} = (80+j60 \ \Omega)/Z_{base}$

Figure 2

(a) (1 points) Use
$$V_{ll,b} = 230 \text{ kV}, V_{LN,b} = 230/\sqrt{3} \text{ kV} = 132.79 \text{ kV}, S_{3\phi,b} = 100 \text{ MVA}, S_{\phi,b} = 33.33 \text{ MVA}, I_{base} = \frac{S_{\phi,b}}{V_{LN,b}} = \frac{S_{3\phi,b}}{\sqrt{3}V_{ll,b}}, Z_{base} = \frac{(V_{LN,b})}{(\frac{S_{\phi,b}}{V_{LN,b}})} = \frac{(V_{ll,b}/\sqrt{3})}{(\frac{S_{3\phi,b}}{\sqrt{3}V_{ll,b}})} = \frac{V_{ll,b}^2}{S_{3\phi,b}} \text{ to }$$

determine I_{base} , Z_{base} , $Z_{line,pu}$, and $Z_{load,pu}$. (Note that I_{base} should have unit A, Z_{base} should have unit Ω . Z_{line} and Z_{load} should have no unit because the Ω on the numerator and denominator are canceled out.)

- (b) (2 points) Determine $V_{A'N,pu}$, $I_{A',pu}$, and $S_{loadA,pu}$
- (c) (1 points) Multiply line-to-neutral voltage $V_{A'N,pu}$ by $V_{LN,b}$, multiply $I_{A',pu}$ by I_{base} , and multiply $S_{loadA,pu}$ by $S_{\phi,b}$, to obtain their actual values. Compare the results with problem 1.