ECE 444/544 Supervisory Control & Critical Infrastructures

Session 12

Presented by: Chris Dyer 20 February 2024

Protocol Definition

 These are the rules or a standard that define the syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both. Communicating systems use well-defined formats (protocol) for exchanging messages.

- Terms/Acronyms Used
 - » RTU, Communications Processor, Data Concentrator
 - » IED, relay, meter, field device, PLC
 - » EMS, DMS, Management System
 - » DNP, MODBUS, IEC-61850
- What is a SCADA Protocol
 - » EMS vs Substation
 - » Operations vs Engineering vs

- SCADA/Protocol History
 - » 1930s Used Telco Tech
 - Wire for wire (think telegraph systems)
 - » 1960s intro of a 'true' protocol
 - 10 bit, slow speeds
 - » 1960s/1970s intro of modems, using voice lines to carry data streams at higher speeds
 - No more wire for wire
 - » 1970s intro of 'affordable' microprocessor

- SCADA/Protocol History
 - » 1970s/1980s more advancement of RTUs/IEDs due to lowering cost of microprocessors and advancement of functions
 - More advanced protocols and more data
 - » 1980s move away from proprietary protocols
 - There were 10s, or 100s of different protocols and variants
 Some back and forth on this move still ongoing
 - Integrated systems using off the shelf components

- SCADA/Protocol History
 - » 1980s-current
 - Advancement was slow but in most recent years large moves to high speed networks, newer protocols, etc
 - Many proprietary RTUs with open protocols, programming languages, etc.
 - Self describing, object oriented

Other Protocols

- » SEL
- » Conitel CONtrol Indication TELemetry (Leeds & Northrup)
- » CDC (Control Data Corporation)
- » L&G 8979 (Landis & Gyr / Telgyr)
- » Westinghouse REDAC
- » Cooper 2179 (PG&E 2179)
- » Harris
- » GETAC

Selecting Protocols

- » Primary Usage
 - SCADA
 - DNP, Modbus, MMS
 - System Protection
 - GOOSE
 - Special Functions
 - Sampled Values
- » Data Requirements
- » Equipment
- » Common Practice

What do we want in a SCADA protocol

- » Device Addressing
- » Device Health
- » Data Integrity Checks
- » Security
- » Reasonable Update Times (within device limits)
- » Discovery
- » Data Value
- » Timestamp
- » Validity / Quality
- » Others?

Decimal

- » Decimal definition a numeral system with a base of ten (0-9)
- » More human readable
- » Less matched with bits
 - 16 bit number 65535 does not match easily with a decimal number when broken down into its base components
 - $-198 = 1x10^2 + 9x10^1 + 8x10^0 = 198$

Binary

- » Binary definition a numeral system with a base of two (0, 1)
- » Binary digit is one bit
- » Binary nibble is four bits
- » Binary byte is eight bits or two nibbles
- » Example:
 - -11000110 = 1x2⁷ + 1x2⁶ + 0x2⁵ + 0x2⁴ + 0x2³ + 1x2² + 1x2¹ + 0x2⁰ (198 Decimal)

Hexadecimal

- » Hexadecimal definition a numeral system with a base of sixteen (0-9, A, B, C, D, E, F)
- » Easier way to represent binary
 - One hex digit represents four binary digits (nibble)
 - Easily translatable to other numbering systems
 - $C6_H = CH(12D)x16(D)^1 + 6(H/D)x16(D)^0$ (198 Decimal)
 - $C6 = Cx16^{1} + 6x16^{0}$ (198 Decimal)
 - $C6 = 12x16^{1} + 6x16^{0}$

 It all looks the same on the wire. Previous numerical systems are only a way to describe the binary system. On vs Off

- Least significant bit / Most significant bit
- 1101 vs 1011 (13 or 11 decimal?)
- Least significant byte / Most significant byte
- C6 vs 6C (198 or 108 decimal)
- Least significant word / Most significant word
- 00 C6 vs C6 00 (198 vs 50,688)

Numbering Formats

- 12 bit integer = 4095 Unsigned
- 16 bit integer = 65535 Unsigned
- 32 bit integer = 4294967295 Unsigned
- 32 bit floating point $\sim 10^{38}$
- Signed / Unsigned
 - » MSB carries the sign
 - -12 bit integer = -2048 to 2047
 - 16 bit integer = -32768 to 32767
 - -32 bit integer = -2147483648 to 2147483647

Numbering Interpretation / Scaling

- » Why so much time spent on scaling for protocol discussion.
 - This is the single most common place mistakes are made.
 - Many people have an outlook that we can just figure it out on site, etc.
 - This takes more time
 - We don't have easy access to manufacture's docs
 - "Scaling isn't that big of a deal, what's the worst that can happen"
 - Wind park curtailed and thousands lost due to a 100 MW curtailment becoming a 10 MW curtailment
 - Generator tripped offline due to an overscale causing the generator logic to think it was seeing a negative number which 'purposely' called for the trip

Numbering Interpretation / Scaling

- » Why so much time spent on scaling for protocol discussion.
 - This becomes very important:
 - As we move to more true SCADA automation;
 curtailment, load shedding, distribution automation
 - Real time \$ decisions being made based using scaling
 - As we move to IEC61850 or others like it
 - Real time protection decisions being made using scaling

Distributed Network Protocol v3

- Early 1990s Westronics -> GE-Harris
- Open standard
- DNP, DNP3, IEEE 1815-2012
- Client/Server (EMS/Outstation)
 - » Legacy terminology
- Serial or Ethernet options

DNP Pros and Cons

» Pros

- Object oriented which allows for more than just data value
 - Has timestamp capability
 - Has data quality built in
 - Has outstation (device) health built in (IIN bits)
- Has data integrity checks built in
 - · CRC every 16 bytes
- Has server and client device addressing
- Included on many devices
- Capable of supporting 65520 addresses on one system (full 16 bits for address info)
- When configured correctly, message structure allows for very efficient communication, timing, etc.
- Secure Authentication
- Unsolicited responses

DNP Pros and Cons

» Cons

- Higher complexity than "simple" protocols
 - More "free-flowing"
 - Larger messages
 - Challenging to interpret
- DNP has provisions for security although many devices don't utilize
- Difficult to troubleshoot
- CAN be very inefficient if incorrectly configured

DNP Details - Objects

- » Data Types
 - Object Based
 - 01 \rightarrow Binary Input
 - 02 → Binary Input Change
 - 10 → Binary Output
 - · 12 → Control Block
 - 20 → Binary Counter
 - 21 → Frozen Binary Counter
 - 22 → Binary Counter Change
 - · 30 → Analog Input
 - 32 → Analog Input Change

DNP Details - Variations

» Data Types

- Variations
 - Object 32
 - Var 0 → Analog Change (no specific variation)
 - Var 1 → 32 Bit Analog Change Event Without Time
 - Var 2 → 16 Bit Analog Change Event Without Time
 - Var 3 → 32 Bit Analog Change Event With Time
 - Var 4 → 16 Bit Analog Change Event With Time
 - Var 5 → Short Float Bit Analog Change Event Without Time
 - Var 6 → Long Float Bit Analog Change Event Without Time
 - Var 7 → Short Float Bit Analog Change Event With Time
 - Var 8 → Long Float Bit Analog Change Event With Time

DNP Details - Deadbands

- » So what's with all of this change 'stuff'
 - Event reporting
 - User configurable Δ before reporting an event change
 - Bandwidth management
 - Can lead to commissioning or operation issues if not set correctly.

DNP Details – Polling

- » Integrity
- » Event
- » Classes
- » Unsolicited

DNP Details – Message Structure

This is the minimum DNP message Length (Block 0) and is a Length of 5
Octets (10 octets including START and CRC).

DNP Details – Message Structure

DATA LINK Control Field

FROM PRIMARY (Initiation Station) to SECONDARY

FROM SECONDARY (Responding Station) to PRIMARY

DIR = DIRECTION - 1 = From A to B

1 = From A to B 0 = From B to A

Frame direction with respect to the client.

PRM= Data Flow Control 1 = Frame from Initiating Station 0 = Frame from Responding Station Initiation Frame or Responding Frame Designation.

FCB = Frame Count Bit Toggles with each SEND/CONFIRM COMBINATION

(With Each Completed Host / Outstation transaction).

Indicates duplication or frame loss.

FCV = Frame Count Valid 1 = Frame Count Bit Valid 0 = Ignore Frame Count Bit.

Enables Function of Frame Count Bit. (Sent From Host)

RES = Reserved Bit - No Function Defined

DFC = Data Flow Control 1 = D L Buffer Overflow Condition in Receiving Station 0 = Primary Can Send Data.

Prevents Overflow of Data buffers in IED (Buffer Health Indication of Responding Station)

Transport Layer

FIN = Final Indication 1 = FINal Frame in sequence 0 = More Frames Follow

FIR = FIRst Frame 1 = FIRst Frame In a Sequence 0 = Not The First Frame

0 <= Sequence Number <= 63 (Number rolls over if more frames than 63)

 Allows Primary and Secondary Devices to Assemble Multi-Fragment Messages.

Application Layer

- Application Header is 2 Octets As Illustrated
- Application Fragment contains Individual Object Headers and Object Data

Application Layer

- Application Header is 2 Octets As Illustrated
- Application Fragment contains Individual Object Headers and Object Data

Application Header (Request)

FIN = Final Indication 1 = FINal Fragment in sequence 0 = More Fragments Follow FIR = FIRst Frame 1 = First Fragment In a Sequence 0 = Not The First Fragment AP CONF. = Application Confirm 1 = Ap Layer Confirm Expected 0 = No Ap Layer Confirm Expected.

UNSOL = Unsolicited 1 = Unsolicited Message 0 = Polled Message SEQUENCE NUMBER 0 <= X<= 15 – Sequence Fragment Number (Rollover at 15)

DNP Details – Device Health/Internal Indications

» Internal Indications (IIN)

- IIN1.0 ALL_STATIONSAn all-stations message was received.
- IIN1.1 CLASS_1_EVENTS The RTU has unreported class 1 events.
- IIN1.2 CLASS 2 EVENTS The RTU has unreported class 2 events.
- IIN1.3 CLASS_3_EVENTS The RTU has unreported class 3 events.
- IIN1.4 NEED TIME Time synchronization is required.
- IIN1.5 LOCAL_CONTROL One or more of the points are in local control
- IIN1.6 DEVICE TROUBLE An abnormal, device-specific condition exists
- IIN1.7 DEVICE RESTART The RTU restarted.
- IIN2.0 NO_FUNC_CODE_SUPPORT-The RTU does not support this function code.
- IIN2.1 OBJECT_UNKNOWN RTU does not support requested operation for objects in the request.
- IIN2.2 PARAMETER_ERROR A parameter error was detected.
- IIN2.3 EVENT_BUFFER_OVERFLOW -An event buffer overflow condition exists in the RTU and at least one unconfirmed event was lost.
- IIN2.4 ALREADY_EXECUTING The operation requested is already executing. Support is optional.
- IIN2.5 CONFIG_CORRUPT The outstation detected corrupt configuration. Support is optional.
- IIN2.6, 7 RESERVED_2, _1 Reserved for future use. Always set to 0.

- Query
 - 05 64 14 C4 01 00 65 00 **29 7D**
 - DE CE 01 3C 04 06 3C 03 06 3C 02 06 3C 01 06 **EE 5D**
 - 05 64 // start
 - 14 // length (not including CRC)
 - C4 // data link control field
 - 01 00 // destination device address
 - 65 00 // source device address
 - 29 7D // CRC

- Query
 - 05 64 14 C4 01 00 05 00 2B 25
 - DE CE 01 3C 04 06 3C 03 06 3C 02 06 3C 01 06 EE 5D
 - DE CE // Transport Header / Application Control
 - 01 // Application Function (Read)
 - 3C 04 06//Obj60 (class), Var4(class 3), Qual6(all points)
 - 3C 03 06//Obj60 (class), Var4(class 2), Qual6(all points)
 - 3C 02 06//Obj60 (class), Var4(class 1), Qual6(all points)
 - 3C 01 06//Obj60 (class), Var4(class 0), Qual6(all points)
 - EE 5D // CRC

Response

- 05 64 FF 44 65 00 01 00 **17 ED**
- 64 EE 81 00 00 20 02 17 14 10 01 3A 0E 11 01 2C EA BF
- 06 17 01 A7 00 1C 01 A3 00 2F 01 F6 F1 30 01 E7 4D 90
- F8 31 01 7C 03 06 01 D2 0D 25 01 EB F1 26 01 F6 31 C5
- F8 10 01 4B 0E 11 01 3F 06 1C 01 A7 00 2F 01 ED 09 1B
- F1 30 01 EE F8 06 01 B6 0D 07 01 72 06 22 01 A3 66 0D
- 00 25 01 FA F1 26 01 04 F9 01 02 00 00 EF 01 81 21 12
- 01 01 01 81 01 01 01 01 01 01 01 01 01 01 01 01 74 13
- 01 01 01 01 01 01 01 01 01 01 01 81 01 01 01 67 CF
- 01 01 01 01 01 01 01 01 01 01 81 01 01 01 01 01 38 D2
- 81 81 81 81 01 01 01 01 01 01 01 01 01 81 01 01 86 E7

- 01 01 01 01 01 01 01 01 01 01 8D 7B
 - 05 64 // start
 - FF // length (not including CRC)
 - 44 // data link control field
 - 65 00 // destination device address
 - 01 00 // source device address
 - 17 ED // CRC

- 05 64 FF 44 65 00 01 00 17 ED
- 64 EE 81 00 00 20 02 17 14 10 01 3A 0E 11 01 2C EA BF

01 01 01 01 01 01 01 01 01 01 8D 7B

- 64 EE // Transport Header / Application Control
- 81 // Application Function (Read)
- 00 00//Internal Indications
- 20 02 17 // Object/Variation/Qualifier
- 14// Number of objects returned
- 10 (index) 01 (quality) 3A 0E (value) // Index Flag,
 Value
- EA BF // CRC

- 05 64 FF 44 65 00 01 00 17 ED
- 64 EE 81 00 00 20 02 17 14 10 01 3A 0E 11 01 2C EA BF
- 06 17 01 A7 00 1C 01 A3 00 2F 01 F6 F1 30 01 E7
 4D 90
- F8 31 01 7C 03 06 01 D2 0D 25 01 EB F1 26 01 F6 **31 C5**
- F8 10 01 4B 0E 11 01 3F 06 1C 01 A7 00 2F 01 ED 09 1B
- F1 30 01 EE F8 06 01 B6 0D 07 01 72 06 22 01 A3 66 0D
- 00 25 01 FA F1 26 01 04 F9 01 02 00 00 EF 01 81 21 12
- 01 01 01 01 01 01 01 01 01 01 01 01 01 81 01 01 01 67 CF
 01 01 01 01 01 01 01 01 01 01 81 01 01 01 01 01 38 D2

- 01 01 01 81 01 01 01 01 01 01 01 01 01 01 01 01 74 13
- 01 01 01 01 01 01 01 01 01 81 01 01 01 01 01 01 **F4 3F**
- 01 01 01 01 01 01 01 01 01 01 8D 7B
 - 11 (index) 01 (flag) 2C 06 (value) // Index Flag, Value
 - 17 (index) 01 (flag) A7 00 (value) // Index Flag, Value
 - 1C (index) 01 (flag) A3 00 (value) // Index Flag, Value
 - 2F (index) 01 (flag) F6 F1 (value) // Index Flag, Value
 - 4D 90 // CRC

What Questions Do You Have?

Thank you for your attention.