CS/ECE 444/544: Homework \#1

Due: Session 9 (February 8)

The 60 Hz line current on the transmission line below is 950 ARMS at an angle $\varphi_{\mathrm{i}}=-13$ degrees, and the line to neutral bus voltage is (230/SQRT(3)) kV RMS at an angle $\varphi_{\mathrm{v}}=5$ degrees.

The current transformer ratio is 1000:5 and the voltage transformer ratio is 230,000:120
Complete the following steps:

1. Calculate the secondary (scaled) values of the RMS voltage and current
2. Calculate the real power transfer using in primary values and secondary values using the equation below. 544 students: If they don't match, comment on why that is the case.

$$
\mathrm{P}_{3 \mathrm{ph}}=3 \cdot\left|\mathrm{~V}_{\mathrm{LN}}\right| \cdot|\mathrm{I}| \cdot \cos \left(\phi_{\mathrm{v}}-\phi_{\mathrm{i}}\right)
$$

3. Plot the secondary values of $v(t)$ and $i(t)$ versus time for one 60 Hz cycle (you don't have to use Mathcad you can use Matlab, write your own program, or use a spreadsheet.
4. Plot the output versus time for an analog-to-digital (A/D) converter applied to the current waveform from part 3 for the following options. Assume 8 samples per 60 Hz cycle.
a) You have a 4 bit A / D where the most significant bit is a sign bit (MSB). Use the signed magnitude to represent the negative number (0 is positive and 1 is negative). In your plot, simply put the negative number below zero. Assume full scale for you're A / D converter is -7 A to +7 A . Compare your result to the original waveform.
b) Repeat part a) with the full scale range changed to -35 A to +35 A .
c) Repeat parts a) and b) with a 5 bit A / D (again, MSB is the sign bit).
5. CS and ECE 544 students only: Plot the output versus time for an analog-to-digital (A/D) converter applied to the voltage waveform from part 3 for the following options. Assume 8 samples per 60 Hz cycle.
a) You have a 4 bit A / D where the most significant bit is a signbit (MSB). Use the signedmagnitude to represent the negative number (0 is positive and 1 is negative). In your plot, simply put the negative number below zero. Assume full scale for you're A / D converter is -150 V to +150 V .
b) Repeat 5 a) with a 5 bit A / D (again, MSB is the sign bit) and the same full scale
c) Calculate the RMS current magnitudes for problem 4 parts a) and c) and compare with your original magnitudes. Use the following formula (you will need to break the intergral over the the flat line segments)

$$
\mathrm{I}_{\mathrm{RMS}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int_{0}^{\mathrm{T}}\left(\mathrm{i}(\mathrm{t})^{2}\right) \mathrm{dt}}
$$

