Two phase open sequence connections

$Z_B = Z_C = \infty$

- Boundary conditions in ABC domain:

$I_b = I_c = 0$

$V_{aa'} = Z_A \cdot I_a$

- Transform boundary conditions to sequence domain

 - Result for currents is similar to that for a SLG fault:

 $I_0 = I_1 = I_2 = \frac{I_a}{3}$ \quad \text{implying series connection of sequence blocks}

 - Voltage equation mapped to sequence domain:

 $V_{aa'0} + V_{aa'1} + V_{aa'2} = Z_A \cdot (I_0 + I_1 + I_2)$

- Rearrange equation grouping terms:

 $\left(V_{aa'0} - Z_A \cdot I_0 \right) + \left(V_{aa'1} - Z_A \cdot I_1 \right) + \left(V_{aa'2} - Z_A \cdot I_2 \right) = 0$