ECE 523, Lect 17

Two phase open sequence connections

$$
\mathrm{Z}_{\mathrm{B}}=\mathrm{Z}_{\mathrm{C}}=\infty
$$

- Boundary conditions in ABC domain:
$\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}=0$
$\mathrm{V}_{\mathrm{aa}^{\prime}}=\mathrm{Z}_{\mathrm{A}} \cdot \mathrm{I}_{\mathrm{a}}$
- Transform boundary conditions to sequence domain
- Result for currents is similar to that for a SLG fault:
$\mathrm{I}_{0}=\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{\mathrm{I}_{\mathrm{a}}}{3}$
- implies series connection of sequence blocks
- voltage equation mapped to sequence domain:
$\mathrm{V}_{\mathrm{aa}^{\prime} 0}+\mathrm{V}_{\mathrm{aa}^{\prime} 1}+\mathrm{V}_{\mathrm{aa}{ }^{\prime} 2}=\mathrm{Z}_{\mathrm{A}} \cdot\left(\mathrm{I}_{0}+\mathrm{I}_{1}+\mathrm{I}_{2}\right)$
- Rearrange equation grouping terms:

$$
\left(\mathrm{V}_{\mathrm{aa}^{\prime} 0}-\mathrm{Z}_{\mathrm{A}} \cdot \mathrm{I}_{0}\right)+\left(\mathrm{V}_{\mathrm{aa}^{\prime} 1}-\mathrm{Z}_{\mathrm{A}} \cdot \mathrm{I}_{1}\right)+\left(\mathrm{V}_{\mathrm{aa}^{\prime} 2}-\mathrm{Z}_{\mathrm{A}} \cdot \mathrm{I}_{2}\right)=0
$$

