ECE 523: Synchronous Machine Steady-state Equivalent Circuit

Rotor flux pulls the stator flux
in a generator, vice versa for a motor

$$
\tau=\mathrm{k} \cdot\left(\mathrm{~B}_{\mathrm{s}} \times \mathrm{B}_{\mathrm{r}}\right)
$$

Electric Circuit Equivalent:

$v_{a}(t)=r_{a} \cdot i_{a}(t)+\frac{d}{d t} \lambda_{a} \quad r_{a}$ is the copper loss in the stator winding.

- λ is called a flux linkage.
- If we ignore saturation then

$$
\lambda=N \cdot \phi
$$

- Faraday's law, for a transformer:

$$
\mathrm{e}=\frac{\mathrm{d}}{\mathrm{dt}} \lambda=\mathrm{N} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \phi
$$

- However, for a rotating machine, the number of turns coupled by the flux will also vary since the windings are distributed.
- So the Faraday's Law equation becomes:

$$
\mathrm{e}=\frac{\mathrm{d}}{\mathrm{dt}} \lambda=\mathrm{N} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \phi(\mathrm{t})+\phi \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~N}(\mathrm{t})
$$

- The machine case is further complicated by the coupling between phases, so λ_{a} will be impacted by the currents in the other phases and in the field circuit
- Recall that when we discussed magnetic circuits, we defined a term called "Reluctance"
$\mathrm{L}=\frac{\mathrm{N}^{2}}{\mathrm{Rel}}$

- We can use L to related the flux linkages to the currents in each coupled circuit

$$
\lambda_{a}=L_{a a} \cdot i_{a}(t)+L_{a b} \cdot i_{b}(t)+L_{a c} \cdot i_{c}(t)+L_{a F} \cdot i_{f}
$$

- L_{aa} is the self inductance of phase A
- L_{ab} is mutual inductance between phases A and B
- L_{ac} is mutual inductance between phases A and C
- L_{aF} is mutual inductance between phases A the field winding F

We will find later that each of these inductances each have a constant part and a part that varies with time as the rotor turns

- As a first approximation, we can break the L_{aa} into:

$$
\begin{array}{lll}
\mathrm{L}_{\mathrm{aa}}=\mathrm{L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{al}} \quad \text { where: } \quad & \mathrm{L}_{\mathrm{aa} 0}=\frac{\mathrm{N}_{\mathrm{s}}{ }^{2}}{2 \cdot \operatorname{Rel}_{\mathrm{ag}}} \quad \begin{array}{l}
\mathrm{N}_{\mathrm{s}}=\text { Stator_turns } \\
\text { Reluctance across the air gap } \\
\\
\\
\mathrm{L}_{\mathrm{al}}=\text { Leakage }
\end{array}
\end{array}
$$

$$
\begin{gathered}
\mathrm{L}_{\mathrm{ab}}=\mathrm{L}_{\mathrm{aa} 0} \cdot \cos (120 \mathrm{deg}) \\
\mathrm{L}_{\mathrm{ac}}=\mathrm{L}_{\mathrm{aa} 0} \cdot \cos (-120 \mathrm{deg}) \\
\mathrm{L}_{\mathrm{aF}}=\mathrm{L}_{\mathrm{f}} \cdot \cos \left(\theta_{0}+\omega \cdot \mathrm{t}\right) \\
\mathrm{L}_{\mathrm{f}}=\frac{\mathrm{N}_{\mathrm{f}} \cdot \mathrm{~N}_{\mathrm{s}}}{2 \mathrm{Rel}_{\mathrm{ag}}}
\end{gathered}
$$

Note that only the self term has leakage (leakage is not part of the mutual inductance.

$$
\mathrm{L}_{\mathrm{aF}}=\mathrm{L}_{\mathrm{f}} \cdot \cos \left(\theta_{0}+\omega \cdot \mathrm{t}\right) \quad \text { note that this varies with time. }
$$

Then we can rewrite the flux linkage equation as:

$$
\lambda_{\mathrm{a}}=\mathrm{L}_{\mathrm{aa} 0} \cdot\left[\mathrm{i}_{\mathrm{a}}(\mathrm{t})-\left(\frac{\mathrm{i}_{\mathrm{b}}(\mathrm{t})}{2}\right)-\left(\frac{\mathrm{i}_{\mathrm{c}}(\mathrm{t})}{2}\right)\right]+\mathrm{L}_{\mathrm{a} \mid} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{F}} \cdot \mathrm{i}_{\mathrm{f}} \cdot \cos \left(\theta_{0}+\omega \cdot \mathrm{t}\right)
$$

- Note impact of $\cos (+120)$ and $\cos (-120)$

Assume balanced three phase circuit:

$$
\mathrm{i}_{\mathrm{a}}+\mathrm{i}_{\mathrm{b}}+\mathrm{i}_{\mathrm{c}}=0 \quad \text { or: } \quad \mathrm{i}_{\mathrm{a}}=-\left(\mathrm{i}_{\mathrm{b}}+\mathrm{i}_{\mathrm{c}}\right)
$$

So we can rewrite the expression as:

$$
\lambda_{\mathrm{a}}=\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{aa} 0} \cdot i_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{a}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{F}} \cdot i_{\mathrm{f}} \cdot \cos \left(\theta_{0}+\omega \cdot \mathrm{t}\right)
$$

Then the voltage equation becomes:

$$
\mathrm{v}_{\mathrm{a}}(\mathrm{t})=\mathrm{r}_{\mathrm{a}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\frac{\mathrm{d}}{\mathrm{dt}} \lambda_{\mathrm{a}}=\mathrm{r}_{\mathrm{a}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{aa} 0} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{al}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{a}}(\mathrm{t})-\omega \cdot \mathrm{L}_{\mathrm{F}} \cdot \mathrm{i}_{\mathrm{f}} \cdot \sin \left(\theta_{0}+\omega \cdot \mathrm{t}\right)
$$

Note derivative of cosine term
Define:

- Voltage due to B_{r}
$\mathrm{e}_{\mathrm{a}}(\mathrm{t})=-\omega \cdot \mathrm{L}_{\mathrm{F}} \cdot \mathrm{i}_{\mathrm{f}} \cdot \sin \left(\theta_{0}+\omega \cdot \mathrm{t}\right)=\omega \cdot \mathrm{L}_{\mathrm{F}} \cdot \mathrm{i}_{\mathrm{f}} \cdot \cos \left(\frac{\pi}{2}+\theta_{0}+\omega \cdot \mathrm{t}\right)$
Define:

$$
\delta=\frac{\pi}{2}+\theta_{0}
$$

Phasor form:

$$
\overline{\mathrm{E}_{\mathrm{a}}}=\left|\mathrm{E}_{\mathrm{a}}\right| \cdot \mathrm{e}^{\mathrm{j} \cdot \delta}
$$

- Voltage due to B_{s} (armature reaction)

$$
\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{aa}} 0 \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{a}}(\mathrm{t})
$$

Now define the direct axis synchronous reactance:

$$
\mathrm{X}_{\mathrm{d}}=2 \cdot \pi \cdot 60 \mathrm{~Hz}\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{aa} 0}+\mathrm{L}_{\mathrm{al}}\right)
$$

Dominated by $\quad \mathrm{L}_{\mathrm{a} a 0}$ since leakage is small

So the voltage equation becomes:

$$
\mathrm{v}_{\mathrm{a}}(\mathrm{t})=\mathrm{r}_{\mathrm{a}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{s}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{e}_{\mathrm{a}}(\mathrm{t})
$$

Or in phasor form:

$$
\overline{\mathrm{V}_{\mathrm{a}}}=\mathrm{r}_{\mathrm{a}} \cdot \overline{I_{a}}+j \cdot X_{\mathrm{s}} \cdot \overline{I_{a}}+\overline{\mathrm{E}_{\mathrm{a}}}
$$

Think back to dc machine, this implies current entering machine (motor operation)
Generator equation:

$$
\overline{\mathrm{V}_{\mathrm{a}}}=\overline{\mathrm{E}_{\mathrm{a}}} \cdot-\mathrm{r} \cdot \overline{\mathrm{I}_{\mathrm{a}}}-\mathrm{j} \cdot \mathrm{X}_{\mathrm{s}} \cdot \overline{\mathrm{I}_{\mathrm{a}}}
$$

Per Phase Equivalent Circuit (assumes Y connected):

- For a large machine it is generally possible to neglect R_{a}
- Normally the X / R ratio is over 20

Salient Pole Machine Equations

Inductance Equations:

Direct axis inductance of phase "s" (round rotor term)

$$
\mathrm{L}_{\mathrm{ss}}=\mathrm{h} \cdot \mathrm{k} \cdot \mathrm{~N}_{\mathrm{s}}{ }^{2} \quad \mathrm{k}=\frac{\mu_{0} \cdot \mathrm{r} \cdot \mathrm{l}_{\mathrm{eff}} \cdot \pi}{4}
$$

or we could say: $\quad L_{\mathrm{SS}}=\frac{\mathrm{N}_{\mathrm{s}}{ }^{2}}{2 \cdot \operatorname{Rel}_{\mathrm{ag}}}$
Saliency adjustment term:

$$
\mathrm{L}_{\Delta}=\frac{\Delta \mathrm{h}}{2} \cdot \mathrm{k} \cdot \mathrm{~N}_{\mathrm{s}}^{2}
$$

Phase C Stator Flux

Coupling to rotor:

$$
\mathrm{L}_{\mathrm{sf}}=\left(\mathrm{h}+\frac{\Delta \mathrm{h}}{2}\right) \cdot \mathrm{k} \cdot \mathrm{~N}_{\mathrm{s}} \cdot \mathrm{~N}_{\mathrm{f}} \quad \mathrm{~L}_{\mathrm{m}}=\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}
$$

Self inductances:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{aa}}\left(\theta_{\mathrm{r}}\right)=\left(\mathrm{L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right)-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}\right) \\
& \mathrm{L}_{\mathrm{bb}}\left(\theta_{\mathrm{r}}\right)=\left(\mathrm{L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right)-\mathrm{L}_{\Delta} \cdot \cos \left[2 \cdot\left(\theta_{\mathrm{r}}-\frac{2 \pi}{3}\right)\right]=\left(\mathrm{L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right)-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}+\frac{2 \cdot \pi}{3}\right) \\
& \mathrm{L}_{\mathrm{cc}}\left(\theta_{\mathrm{r}}\right)=\left(\mathrm{L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right)-\mathrm{L}_{\Delta} \cdot \cos \left[2 \cdot\left(\theta_{\mathrm{r}}+\frac{2 \pi}{3}\right)\right]=\left(\mathrm{L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right)-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}-\frac{2 \cdot \pi}{3}\right)
\end{aligned}
$$

Stator to stator mutual inductances

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{ab}}\left(\theta_{\mathrm{r}}\right)=\frac{-\mathrm{L}_{\mathrm{ss}}}{2}-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}-\frac{2 \cdot \pi}{3}\right) & \mathrm{L}_{\mathrm{ac}}\left(\theta_{\mathrm{r}}\right)=\frac{-\mathrm{L}_{\mathrm{ss}}}{2}-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}+\frac{2 \cdot \pi}{3}\right) \\
\mathrm{L}_{\mathrm{bc}}\left(\theta_{\mathrm{r}}\right)=\frac{-\mathrm{L}_{\mathrm{ss}}}{2}-\mathrm{L}_{\Delta} \cdot \cos \left(2 \cdot \theta_{\mathrm{r}}\right) & \text { all symmetric: } \quad \mathrm{Lab}=\mathrm{Lba} \quad \text { and so on. }
\end{array}
$$

Stator to rotor mutual inductances

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{af}}\left(\theta_{\mathrm{r}}\right)=-\mathrm{L}_{\mathrm{sf}} \cdot \sin \left(\theta_{\mathrm{r}}\right) & \mathrm{L}_{\mathrm{bf}}\left(\theta_{\mathrm{r}}\right)=-\mathrm{L}_{\mathrm{sf}} \cdot \sin \left(\theta_{\mathrm{r}}-\frac{2 \cdot \pi}{3}\right) \\
\mathrm{L}_{\mathrm{cf}}\left(\theta_{\mathrm{r}}\right)=-\mathrm{L}_{\mathrm{sf}} \cdot \sin \left(\theta_{\mathrm{r}}+\frac{2 \cdot \pi}{3}\right) &
\end{array}
$$

Rotor inductance:

$$
\mathrm{L}_{\mathrm{ff}}\left(\theta_{\mathrm{r}}\right)=\left(\mathrm{h}+\frac{\Delta \mathrm{h}}{2}\right) \cdot \mathrm{k} \cdot \mathrm{~N}_{\mathrm{f}}^{2}+\mathrm{L}_{\mathrm{lf}}
$$

Electric Circuit Equivalent (generator convention):

$v_{a}(t)=-r_{a} \cdot i_{a}(t)-\frac{d}{d t} \lambda_{a}$
$\lambda_{a}(\mathrm{t})=\lambda_{\mathrm{aarm}}+\lambda_{\mathrm{af}}=\mathrm{L}_{\mathrm{aa}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})+\mathrm{L}_{\mathrm{ab}} \cdot \mathrm{i}_{\mathrm{b}}(\mathrm{t})+\mathrm{L}_{\mathrm{ac}} \cdot \mathrm{i}_{\mathrm{c}}(\mathrm{t})+\mathrm{L}_{\mathrm{aF}} \cdot \mathrm{i}_{\mathrm{f}}$
$\lambda_{\mathrm{a}}(\mathrm{t})=\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right) \cdot \sqrt{2} \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \cos \left(\omega_{\mathrm{e}} \cdot \mathrm{t}-\theta_{\mathrm{i}}\right)-\frac{3}{2} \cdot \mathrm{~L}_{\Delta} \cdot \sqrt{2}\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \cos \left(\omega_{\mathrm{e}} \cdot \mathrm{t}+\theta_{\mathrm{i}}\right)+\mathrm{L}_{\mathrm{sf}} \cdot \mathrm{I}_{\mathrm{f}} \cdot \cos \left(\omega_{\mathrm{e}} \cdot \mathrm{t}+\frac{\pi}{2}\right)$
Phasor form:

$$
\begin{gathered}
\overline{\Lambda_{\mathrm{a}}}=\mathrm{L}_{\mathrm{sf}} \cdot \frac{\mathrm{I}_{\mathrm{f}}}{\sqrt{2}} e^{\mathrm{j} \cdot \frac{\pi}{2}}+\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right) \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \mathrm{e}^{\mathrm{j} \cdot \theta_{\mathrm{i}}}-\frac{3}{2} \cdot \mathrm{~L}_{\Delta} \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \mathrm{e}^{-\mathrm{j} \cdot \theta_{\mathrm{i}}} \\
\text { Field term } \quad \text { Round rotor term } \\
\begin{array}{c}
\text { Salient pole } \\
\text { adjustment term }
\end{array} \\
\overline{\mathrm{I}_{\mathrm{f}}}=\frac{\mathrm{I}_{\mathrm{f}}}{\sqrt{2}} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{2} \quad \text { "Phasor" for field current representing angle of rotor }} \\
\overline{\Lambda_{\mathrm{af}}}=\mathrm{L}_{\mathrm{sf}} \cdot \overline{\mathrm{I}_{\mathrm{f}}} \\
\overline{\Lambda_{\mathrm{aarm}}}=\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right) \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \mathrm{e}^{-\mathrm{j} \cdot \theta_{\mathrm{i}}}-\frac{3}{2} \cdot \mathrm{~L}_{\Delta} \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \mathrm{e}^{-\mathrm{j} \cdot \theta_{\mathrm{i}}}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{\Lambda_{\text {arrm }}}=\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}\right) \cdot\left(\cos \left(\theta_{\mathrm{i}}\right)-\mathrm{j} \cdot \sin \left(\theta_{\mathrm{i}}\right)\right)-\frac{3}{2} \cdot \mathrm{~L}_{\Delta} \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot\left(\cos \left(\theta_{\mathrm{i}}\right)+\mathrm{j} \cdot \sin \left(\theta_{\mathrm{i}}\right)\right) \\
& \overline{\Lambda_{\text {aarm }}}=\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}_{\mathrm{s}}}-\frac{3}{2} \cdot \mathrm{~L}_{\Delta}\right) \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot\left(\cos \left(\theta_{\mathrm{i}}\right)\right)-\mathrm{j}\left(\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}+\frac{3}{2} \cdot \mathrm{~L}_{\Delta}\right) \cdot\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \sin \left(\theta_{\mathrm{i}}\right)
\end{aligned}
$$

Define quadrature and direct axis inductances:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{q}}=\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}-\frac{3}{2} \cdot \mathrm{~L}_{\Delta} \\
& \mathrm{L}_{\mathrm{d}}=\frac{3}{2} \cdot \mathrm{~L}_{\mathrm{ss}}+\mathrm{L}_{\mathrm{ls}}+\frac{3}{2} \cdot \mathrm{~L}_{\Delta}
\end{aligned}
$$

Note the cause of the difference between L_{d} and L_{q}

Define quadrature and direct axis currents:

$$
\begin{aligned}
& \overline{\mathrm{I}_{\mathrm{aq}}}=\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \cos \left(\theta_{\mathrm{i}}\right) \mathrm{e}^{\mathrm{j} \cdot 0} \\
& \overline{\mathrm{I}_{\mathrm{ad}}}=-\mathrm{j}\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \sin \left(\theta_{\mathrm{i}}\right) \mathrm{e}^{\mathrm{j} \cdot 0}=\left|\mathrm{I}_{\mathrm{s}}\right| \cdot \sin \left(\theta_{\mathrm{i}}\right) \cdot \mathrm{e}^{-\mathrm{j} \cdot \frac{\pi}{2}}
\end{aligned}
$$

Therefore:

$$
\begin{gathered}
\overline{\Lambda_{\mathrm{aarm}}}=\mathrm{L}_{\mathrm{q}} \cdot \overline{\mathrm{I}_{\mathrm{aq}}}+\mathrm{L}_{\mathrm{d}} \cdot \overline{\mathrm{I}_{\mathrm{ad}}} \\
\overline{\Lambda_{\mathrm{a}}}=\overline{\Lambda_{\mathrm{af}}}+\overline{\Lambda_{\mathrm{aq}}}+\overline{\Lambda_{\mathrm{ad}}}=\mathrm{L}_{\mathrm{s}} \\
\overline{\Lambda_{\mathrm{aq}}}=\mathrm{L}_{\mathrm{q}} \cdot \overline{\mathrm{I}_{\mathrm{aq}}} \\
\overline{\Lambda_{\mathrm{ad}}}=\mathrm{L}_{\mathrm{sf}} \cdot \overline{\mathrm{I}_{\mathrm{f}}}+\mathrm{L}_{\mathrm{d}} \cdot \overline{\mathrm{I}_{\mathrm{ad}}}
\end{gathered}
$$

$$
\overline{\Lambda_{\mathrm{a}}}=\overline{\Lambda_{\mathrm{af}}}+\overline{\Lambda_{\mathrm{aq}}}+\overline{\Lambda_{\mathrm{ad}}}=\mathrm{L}_{\mathrm{sf}} \cdot \overline{\mathrm{I}_{\mathrm{f}}}+\mathrm{L}_{\mathrm{q}} \cdot \overline{\mathrm{I}_{\mathrm{aq}}}+\mathrm{L}_{\mathrm{d}} \cdot \overline{\mathrm{I}_{\mathrm{ad}}} \quad \text { recall the angle of the field current }
$$

Back to the voltage equation:

$$
\mathrm{v}_{\mathrm{a}}(\mathrm{t})=-\mathrm{r}_{\mathrm{a}} \cdot \mathrm{i}_{\mathrm{a}}(\mathrm{t})-\frac{\mathrm{d}}{\mathrm{dt}} \lambda_{\mathrm{a}}
$$

as a phasor equation:

$$
\begin{gathered}
\overline{V_{a}}=-r_{a} \cdot \overline{I_{a}}-j \cdot \omega_{e} \cdot \overline{\Lambda_{a}}=-r_{a} \cdot \overline{I_{a}}-j \cdot \omega_{e} \cdot \overline{\Lambda_{a q}}-j \cdot \omega_{e} \cdot \overline{\Lambda_{a d}} \\
\overline{V_{a}}=-r_{a} \cdot \overline{I_{a}}-j \cdot \omega_{e} \cdot L_{q} \cdot \overline{I_{a q}}-j \cdot \omega_{e} \cdot L_{d} \cdot \overline{I_{a d}}-j \cdot \omega_{e} \cdot L_{s f} \cdot \overline{I_{f}} \\
X_{q}=\omega_{e} \cdot L_{q} \\
X_{d}=\omega_{e} \cdot L_{d} \\
X_{s f}=\omega_{e} \cdot L_{s f} \\
\overline{E_{a}}=\omega_{e} \cdot L_{s f} \cdot I_{f} \cdot e^{j} \cdot\left(\frac{\pi}{2}-\frac{\pi}{2}\right)=X_{s f} \cdot\left|I_{f}\right| \cdot e^{j} \cdot 0 \quad \text { Note that th } \\
V_{a}=\overline{E_{a}}-r_{a} \cdot \overline{I_{a}}-j \cdot X_{q} \cdot \overline{I_{a q}}-j \cdot X_{d} \cdot \overline{I_{a d}}
\end{gathered}
$$

Note that this is reference angle in this derivation

