Induction Machine Negative Sequence Example

pu := $1 \quad$ MVA $:=$ MW
Suppose that phaes "a" of the supply an induction motor is opened. Find sequence voltages and currents if $\mathrm{Vbc}=1.0 \mathrm{pu}$ on a line to line basis.

Machine parameters:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}:=4 \mathrm{kV} \quad \text { Efficiency }:=0.93 \\
& \mathrm{P}_{\text {out }}:=1000 \mathrm{hp} \quad \text { or in } \mathrm{W} \quad \mathrm{P}_{\text {out }}=745.7 \cdot \mathrm{~kW} \\
& \mathrm{P}_{\text {in }}:=\frac{\mathrm{P}_{\text {out }}}{\text { Efficiency }} \quad \mathrm{P}_{\text {in }}=801.828 \cdot \mathrm{~kW} \\
& \text { power_factor }:=0.90 \\
& \mathrm{~S}_{\text {in }}:=\frac{\mathrm{P}_{\text {in }}}{\text { power_factor }} \\
& \text { Sbase1 }:=\mathrm{S}_{\text {in }} \\
& \text { slip_rated }:=0.02 \quad \text { Sbase1 }=0.891 \cdot \mathrm{MVA} \\
& \quad \mathrm{R}_{\mathrm{s}}:=0.02 \mathrm{pu} \\
& \quad \mathrm{R}_{\mathrm{r}}:=0.02 \mathrm{pu} \\
& \mathrm{I}_{\mathrm{a}}=0 \\
& \mathrm{I}_{\mathrm{b}}=-\mathrm{I}_{\mathrm{c}}
\end{aligned}
$$

Moving to sequence domain:

$$
\begin{aligned}
I_{1} & =-I_{2}=j \cdot \frac{I_{b}}{\sqrt{3}} \\
V_{b c} & =-j \cdot \sqrt{3} \cdot\left(V_{1}-V_{2}\right)
\end{aligned}
$$

or $\quad V_{1}-V_{2}=j \cdot \frac{V_{b c}}{\sqrt{3}}$

Therefore we connect the positive and negative sequence circuits in series and impose the voltage $\mathrm{V} 1-\mathrm{V} 2$ across them (derived from the value of Vbc)

Original voltage:

$$
\begin{array}{rlr}
\mathrm{V}_{\mathrm{ap}}:=1 \mathrm{pue}^{\mathrm{j} \cdot 0 \mathrm{deg}} & \mathrm{~V}_{\mathrm{bp}}:=1 \mathrm{pu}^{-\mathrm{j} \cdot 120 \mathrm{deg}} \quad \mathrm{~V}_{\mathrm{cp}}:=1 \mathrm{pue} \mathrm{e}^{\mathrm{j} \cdot 120 \mathrm{deg}} \\
\mathrm{~V}_{\mathrm{bc}}:=\mathrm{V}_{\mathrm{bp}}-\mathrm{V}_{\mathrm{cp}} & \left|\mathrm{~V}_{\mathrm{bc}}\right| & =1.732 \cdot \mathrm{pu} \\
& & \arg \left(\mathrm{~V}_{\mathrm{bc}}\right)=-90 \cdot \mathrm{deg} \\
& & \text { This is 1.0 per unit in the line to line voltage...... }
\end{array}
$$

Then V1-V2 is:

$$
\mathrm{V}_{1 _2}:=\mathrm{j} \cdot \frac{\mathrm{~V}_{\mathrm{bc}}}{\sqrt{3}} \quad \mathrm{~V}_{1 _2}=1 \cdot \mathrm{pu} \quad \text { the problem was set up to use nice numbers }
$$

Now we can solve the circuit below, where the positive and negative sequence circuits are connected in

- First come up with the equivalent circuit for the parallel combination in the two rotor circuits...

$$
\begin{array}{ll}
\mathrm{z}_{\text {pos_rot }}:=\left(\frac{1}{j \cdot X_{m}}+\frac{1}{j \cdot X_{r}+\frac{R_{r}}{\text { slip_rated }}}\right)^{-1} & z_{\text {pos_rot }}=(0.858+0.357 i) \cdot p u \\
z_{\text {neg_rot }}:=\left(\frac{1}{j X_{m}}+\frac{1}{j \cdot X_{r}+\frac{R_{r}}{2-\text { slip_rated }}}\right)^{-1} \quad z_{\text {neg_rot }}=\left(9.583 \times 10^{-3}+0.078 \mathrm{i}\right) \cdot p u
\end{array}
$$

- Note how much smaller the real part of this expression is than for the positive sequence part.
$\mathrm{I}_{1 \text { _stator }}=-\mathrm{I}_{2}$ _stator
$I_{1 _ \text {stator }}:=\frac{V_{1 _2}}{2\left(R_{S}+j \cdot X_{S}\right)+z_{\text {pos_rot }}+z_{\text {neg_rot }}}$
$\begin{array}{lll}\mathrm{I}_{1 \text { _stator }}=0.771-0.505 \mathrm{i} & \boxed{\mathrm{I}_{1} \text { stator }}=0.921 \cdot \mathrm{pu} & \boxed{\arg \left(\mathrm{I}_{1} \text { stator }\right)=-33.22 \cdot \mathrm{deg}} \\ \mathrm{I}_{2} \text { _stator }:=-\mathrm{I}_{1} \text { _stator } & & \\ & \mathrm{I}_{2} \text { _stator }=0.921 \cdot \mathrm{pu} & \arg \left(\mathrm{I}_{2} \text { _stator }\right)=146.78 \cdot \mathrm{deg} \\ & & \end{array}$
$\mathrm{V}_{1}:=\mathrm{I}_{1 \text { _stator }} \cdot\left(\mathrm{R}_{\mathrm{s}}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{s}}+\mathrm{z}_{\text {pos_rot }}\right) \quad \mathrm{V}_{1}=(0.897-0.107 \mathrm{i}) \cdot \mathrm{pu}$

$$
\begin{array}{||l|l|}
\hline \mathrm{V}_{1} & =0.904 \cdot \mathrm{pu} \quad \arg \left(\mathrm{~V}_{1}\right)=-6.788 \cdot \mathrm{deg} \\
\hline
\end{array}
$$

$$
\mathrm{V}_{2}:=\mathrm{I}_{2} \text { stator } \cdot\left(\mathrm{R}_{\mathrm{s}}+\mathrm{j} \cdot \mathrm{X}_{\mathrm{s}}+\mathrm{z}_{\text {neg_rot }}\right) \quad \mathrm{V}_{2}=(-0.103-0.107 \mathrm{i}) \cdot \mathrm{pu}
$$

$$
\begin{array}{|l|l|}
\hline \mathrm{V}_{2} & =0.148 \cdot \mathrm{pu} \quad \arg \left(\mathrm{~V}_{2}\right)=-133.828 \cdot \mathrm{deg} \\
\hline
\end{array}
$$

$$
\mathrm{V}_{1}-\mathrm{V}_{2}=1 \cdot \mathrm{pu} \quad \text { as expected..... }
$$

