ECE 524
TRANSIENTS IN
POWER SYSTEMS
SESSION no. 2
\[\Delta V = L \frac{di}{dt} = L \frac{\Delta i}{\Delta t} = L \frac{2A}{2 \text{ns}} = 10^4 \text{V} \]

\[X_m = 3770 \Omega \]

\[L_m = 10 \mu \text{H} \]

If Vacuum Breaker

Older breaker could chop current

2-490 of I\text{rated}

Approx. 10's to 100's mF

10X \frac{x_{m1}}{x_m}

\(I_{st} \) to 10's W\text{N}
Analyzing Transients

- Understand the transient you want to model
- Good data to form detailed models
 » Not trivial to get
- Need mathematical model of the system
 » Appropriate for the transient you are studying
 » Classification of transient important first step

Classifications of Transients

- By Cause
 » Switching transients (all manner of transients)
 » Lightning transients
 » Faults
- Mode of generation of transients
 » Electromechanical
 - Rotating machines mechanical to electrical
 » Electromagnetic
 - Capacitors/Inductors

Introduction 3
Spring 2018
Classification by Frequency Range (CIGRE WG 33.02)

- Low frequency oscillations
 » 0.1 Hz – 3 kHz
- Slow front surges (most switching)
 » 50/60 Hz – 20 kHz
- Fast front surges (lightning, some classes breakers)
 » 10 kHz – 3 MHz
- Very fast front surges (disconnecter restrikes, GIS)
 » 100 kHz – 50 MHz

Validation of Models...

- Graphical user interfaces have made transients programs much easier to use
- It is very easy to get simulation results
- But it is critical to be able to verify that the results are correct
- First step is validating the system model