Line or cable

Unloaded

Increased load

Surge impedance loading

B1

1.0

B2

1.0pu
ATPDraw Cable Constants

ECE524
Session 36

Spring 2018

ATPDraw Cable Parameters

ECE524
Session 36

Spring 2018
Example

Spring 2018

UI
EMTDC Interface: 3 phases plus neutral

Cable interface dialog
- Shorter cables
 - Pay attention to travel time & time step
 - Especially with Bergeron model
- Short cables - model with Pi sections
 - 5 sections to get transient behavior
(5-10)
- Type of cable depends on converter topology used.

DC cables

- Some converter topologies have same polarity of dc voltage always.
- Most voltage source converters can operate with either +Vdc or -Vdc.

- Steady state - challenge for insulation.
- Two mass impregnated oil cables
- Full bridge MMC

Line commutated converters
Transformer Models

- represent turns ratio
- windy config
Low Frequency Transients

- Similar modeling info to fault programs
 » Connection information more important
- Magnetizing branch
 » Saturation
- Core loss term
- Not using per unit
 » Need to include turns ratio
 » Divide leakage L, winding R between windings

Single Phase Equivalent Circuit

- Winding resistance
- Leakage inductance
- Core loss--total losses
- Non-linear inductor model for magnetizing branch

Transformers
Spring 2018
ATP Options

- Ideal transformer component
- Saturable transformer component
- BCTran -- preprocessor that converts description of transformer to coupled RL
- Can also create manually using coupled RL branches

Ideal transformer component

- Combines ideal transformer with ideal source
 » Simply enter transformation ratio
 » Can be used to implement floating source too
 » Uses frequency from basic ATPDraw settings
 - Need to make sure this matches system frequency
 - Setting "Branch = 0" forces ATP to use this frequency
 - "Branch = 1" can avoid this (Vm=1E-20)
Accessing Transformer Models

- Note that three phase and single phase options

Dialog box
Limitations

- Limited to two winding transformers
- *It is very easy to create numerical problems in the simulation with the ideal transformer*

Saturable Transformer

- Model has built-in circuit elements
 - » Winding resistance
 - » Leakage inductance (can’t enter 0)
 - » Core loss resistance
 - » Magnetizing branch
 - not entered as an L in mH
 - » Can set all except leakage to 0 to simplify
 - » Enter winding to winding ratios

\[10^{-6} \text{ mH}\]
Single Phase Saturable Base Attributes

- \(I_0, F_0 \) are steady-state point on saturation characteristic for initial \(L_m \)
- \(RMS = 0 \) or 1: determines how the saturation characteristic is entered.
- Output is information about magnetization branch

Saturation Characteristic

- If \(RMS = 0 \), this is current versus flux
- If \(RMS = 1 \), this is RMS current versus RMS voltage at frequency of first source in the system
- The 0,0 point is assumed by the program
- Up to 10 points can be entered
 » Better to limit to 3-5