Insulation Coordination

- We can't prevent transient overvoltages, so we need to protect against them
- Objective:
 - Design system insulation (for all components) to minimize power interruptions and damage resulting from steady-state, dynamic and transient overvoltages in an economic fashion.

Primary Areas of Concern

- Voltage Stress:
 - Magnitude of Surge
 - Duration of surge
 - Distribution of stress
- Current Stress:
 - Magnitude of surge
 - Length of surge
Primary Areas of Concern

- Dielectric Strength of insulation
- Surge protective devices
 - Device characteristics
 - Device placement
- Cost

Types of Voltage Stresses

- **Temporary Overvoltages**: Power frequency disturbances of relatively long duration
- Possible causes:
 - Faults (unbalanced)
 - Sudden changes in load (usually load rejection)
 - Underloaded long lines
 - Linear resonances due to transients
 - Or driven by harmonic sources
 - Ferroresonance
 - Electromagnetic and electrostatic induction
 - Electromechanical resonances with generators
Types of Voltage Stresses

- **Transient Overvoltages**: Switching transients and transients resulting from changes in operating states. High frequency oscillations can result from these transients, lasting from microseconds to several cycles.
- Possible causes:
 - Line energization
 - Reclosing into trapped charge
 - Opening breakers (TRV)
 - Opening breakers in ungrounded 3 phase systems
 - Capacitor switching
 - Breaker restrike
 - Inductor switching (current chopping)

Analysis of Transient Overvoltages: Solution Issues

- Analytical solutions
- EMTP-type programs
- Location of transient relative to components is important
- Ground connections
- Parasitic capacitance, inductance and resistance
Analysis of Transient Overvoltages: What to study

- Reproducing the event that has occurred (and caused a failure)
- Finding worst case timing and location (statistical study)
- Develop physical understanding

Types of Voltage Stresses

- **Lightning Transients**: Very fast, hundreds of nanoseconds to a few microseconds
 - Direct strike most severe
 - Transmission lines are shielded but do not have adequate insulation for a direct strike
 - Overvoltages not normally from lightning striking phase conductor
 - Secondary effects of shield wire or tower strikes
 - Backflashover (most common)
 - Electromagnetic induction (least severe)
UI Design Issues: Transmission lines

- Conductor to conductor clearances
- Conductor to tower clearances
- Specify insulator strings
- Placement of shield wires
- Placement of ground conductors
- Tower type
- Tower footing resistance

Design Issues: Transformers and Rotating Machines:

- BIL (basic lightning impulse insulation level),
 - Rise time of 1.2μsec and decay to 50% in 50μsec.
- BSL (basic switching impulse insulation level),
 - Rise time of 250μsec and decay to 50% in 2500μsec.
 - Both are used to measure ability of equipment (and insulation) to withstand overvoltages
Characteristics of Self-Restoring Insulation

- **Self-Restoring**
 - Insulator string in air (or other path in air)
 - Once the arc clears completely, insulation back at full strength
 - Circuit breakers in this class

Characteristics of Non-Self-Restoring Insulation

- **Non-Self-Restoring**
 - Insulation failure results in damage to insulation
 - Will need to be isolated and repaired
- Underground cable
- Transformers
- Rotating Machines
Methods for Insulation Coordination Studies

• Apply Rules of Thumb to estimate worst case voltages
• Pre-calculated deterministic studies
 – Calculate absolute worst-case overvoltages
 – Over design
• Deterministic and Statistical
• Purely Statistical

Statistical Variation

V

Transient Overvoltage

Strength of Insulation

Probability
Rules of Thumb

- 3 Phase Line Energization with trapped charge 3.5pu
- 3 Phase Line Energization with closing resistor and trapped charge 2.3pu
- Energize Ungrounded Capacitor Bank 2-2.5pu
- Capacitor Bank Restrike 3.0pu

- Transient Recovery Voltage 2-3pu
- Unfaulted phase, SLG fault 1.73pu

One approach is to assume these will occur and design appropriately.
Statistical and Systematic Studies

- Transient network analyzers were very good at doing repeated studies with the same network configuration and different switching times/conditions
 - Long set up time
 - “Real time” run time

EMTP-like programs

- Can also be used for statistical studies
- A bit more effort to vary switch timing
- STATISTICS and SYSTEMATIC switch will allow pseudo-random variation in switching times