Power Systems Protection

Introduction

• What exactly are we protecting?
 » A
 » B
 » C
 » D
 » E
 » F

Impacts on the Power System

• Local protection
 » Protection of immediate equipment
 » Minimize disruption of loads
 – Duration or interruption or abnormal condition

• Larger system issues?
 » Impacts on stability of larger system
 » Potential for distant impact

• Power Quality
Some Consequences To Avoid:
Substation Fire … Evening News

The Aftermath
Results of Transformer Fire

Generator Fault
Expensive Consequences for Protection Failure

What Events Require Protective Actions

- Faults
- Abnormal operation
What Actions Taken?

- 1
- 2
- 3

What is a Protection System?

- Current and voltage transformers
- Relay
- Circuit breaker
- Control wiring or substation network
- Communication system
- Coordinate with: Other relays, fuses, active controls
Protective Relay

- Piece of equipment whose function is to:
 - Detect defective or abnormal system conditions or detect defective apparatus
 - Initiate proper control response
- Common responses
 - Trip circuit breaker
 - In some cases close breaker
 - In some cases only issues alarm
- Generally a reactionary device

Relay Types?

- Legacy Relays:
 - Electromechanical (1900-present)
 - Single function and mission
 - Discrete digital and analog electronics (1970-1990s)
 - Multifunction, single mission
- Modern Relays
 - Microprocessor based
 - Multiple function and mission
Constraints

- Must be able to detect faulted or abnormal conditions—sensitivity
- Accurately identify it a problem, and only react if there is a problem—selectivity
- Must also be operate for a long time without acting, and then act properly—reliability
- React quickly to minimize damage—speed

Typical Response

- Detect that something has changed
- Identify what has happened
 » Local measurements
 » Communicated data
- Make decision (is this a problem or not)
 » Generate trip signal
 » 1-3 cycles to get to this point
- Breaker response (2-10 cycles)
Impact of Response

- Faster response implies:
 - Less disruption of loads
 - Less energy at the point of fault -- less damage
 - Smaller fireball
 - Faster reclosing -- Improved stability
- Coordination with other devices
 - Intentional delay

What are the inputs?

- Voltage
 - Step down for relay input
- Current
 - Step down for relay input
- Accuracy and Transient Response
- All three phases?
- GPS time stamp?
 - Synchronized phasor measurements
Modern Relays

- Microprocessor based relays

- Sample measured data and compute:
 - RMS voltage or current
 - Travelling wave current or voltage
 - Sequence components (especially 0 or 2)
 - Phase Angle
 - Impedance or Admittance
 - Frequency
 - Torque
Evaluate Measured Data Based on Algorithm

- Time-overcurrent/Inverse time-overcurrent
- Over/under voltage
- Real or reactive power
- Impedance (distance protection)
- Frequency
- Reverse power
- Positive, Negative or Zero Sequence?

Additional Calculations

- Harmonic content (often used for blocking)
- In some cases transient responses used
- Direction to fault
- Fault location
- Breaker failure
- Series faults (line open)
- Combined series/ground faults
Redundancy

- Overlapping zones of protection are common

Overlapping Zones

- Backup in case relay or breaker fails
- Time delay if out of primary zone
- Often more sensitive in secondary zone
- Coordination is a key issue
Role of Communication

- Line protection far faster when can compare with other end of line
- Can locate fault zone
- Need to have adequate back-up in case communication is lost
- Redundancy--does communication go as a result of the fault?