U_{I} Transformers

- Normally model as series impedance from winding resistance and leakage reactance
- Positive and negative impedances equal
- In a Y - Δ transformer that phase shift is in the opposite direction for negative sequence

U I Transformers (continued) Lecture es

- Zero sequence impedance of the transformer depends on core construction
- $\mathrm{X}_{0}=\mathrm{X}_{1}$ for single phase cores
- $\mathrm{X}_{0}=\mathrm{X}_{1}$ for 5 leg or shell type core
- Both have similar path for zero sequence current
- Three leg core $3 \varnothing$ transformers have $X_{0}<X_{1}$
- Zero sequence flux forced out of core
- Excitation branch becomes significant
- This leakage flux travels trough the oil and transformer tank.
- Oil and tank steel have a high reluctance and low inductance producing the low exciting branch inductance
- Zero sequence circuit impacted Y or Δ
- Also impacted by grounding
- Tertiary also complicates connection

U_{I}

- Positive and negative sequence equivalent for $Y-Y, \Delta-\Delta$, (and $Y-\Delta, \Delta-Y$ when phase shift isn't a concern):

V_{H}
v_{X}
- Positive and Negative Sequence for $Y-\Delta$, $\Delta-Y$, ANSI phase shift

$\mathrm{v}_{\mathrm{H}} \quad \mathrm{v}_{\mathrm{X}}$

$\boldsymbol{U}_{\mathbf{I}} \quad$ Transformers with Tertiaries

- $Z_{1}=Z_{2}$-phase rotation doesn't impact
- Low voltage winding often closed delta
- Zero sequence trap
- May float or ground corners through impedance

U_{I}
 Per Unit Equivalents ECE525 (solid grounding)

- Often given short circuit test data as Z_{hm}, Z_{hl} and Z_{ml}
- Not all on same per unit base, so first do change of base

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{h}}:=\left(\frac{1}{2}\right) \cdot\left(\mathrm{X}_{\mathrm{hl}}+\mathrm{X}_{\mathrm{hm}}-\mathrm{X}_{\mathrm{ml}}\right) \\
& \mathrm{X}_{\mathrm{m}}:=\left(\frac{1}{2}\right) \cdot\left(\mathrm{X}_{\mathrm{hm}}+\mathrm{X}_{\mathrm{ml}}-\mathrm{X}_{\mathrm{hl}}\right) \\
& \mathrm{X}_{\mathrm{l}}:=\left(\frac{1}{2}\right) \cdot\left(\mathrm{X}_{\mathrm{ml}}+\mathrm{X}_{\mathrm{hl}}-\mathrm{X}_{\mathrm{hm}}\right)
\end{aligned}
$$

$\boldsymbol{U}_{\boldsymbol{I}}$ Component Modeling: Lines

- $Z_{1}=Z_{2} \quad$-phase rotation doesn't impact
- Often approximated with per phase equivalent self impedance
- Zero sequence current flows through earth and Z_{0} often 2-6 times Z_{1}
- Usually neglect capacitances unless transient case
» Transient response matters for fast detection

U_{I} Component Modeling:

- Need to do detailed line constants calculation to get impedances accurately
- Form impedance matrix and then transform with Symmetrical Components
Transformation matrix $Z_{s}=\left(A^{-1} * Z * A\right)$
- Positive sequence reactance broken into subtransient, transient and steady-state
- Direct vs Quadrature axis
» Fault currents typically near zero power factor
» D-axis only
- Subtransient or transient reactance based on time scale of interest

Generators: Negative Sequence Lecture 16

- MMF rotates backwards at twice the machines synchronous speed
- Double frequency currents in the rotor field and amortisseur windings
- Flux peak occurs along the d and qaxes
- $\mathrm{X}_{2} \approx 0.5^{*}\left(\mathrm{X}_{\mathrm{d}}{ }^{\prime}+\mathrm{X}_{\mathrm{q}}{ }^{\prime \prime}\right)$

