Summary of the Impacts of Grounding on System Protection

Grounding

- System grounding big impact on ability to detect ground faults
- Common ground options:
 - Isolated ground (ungrounded)
 - High impedance ground
 - Low impedance ground
 - Solid or effective ground
Purposes of Grounding: National Electrical Code

- Personal Safety (injury, fire…)
- Ensure Operation of Protective Devices
- Noise Control (esp. at high frequency)

Ground Fault Protection

- Roughly 80% of faults on T&D systems are SLG (single line to ground)
- Ground faults can cause:
 - Large, damaging or dangerous currents
 - EMI problems
 - Voltage sags and interruptions (tripping)
 - Voltage stresses
Issues with Ungrounded Systems

- No intentional ground on neutral/ phases
- Ground fault causes neutral shift

\[
\begin{align*}
V_{an} &= V_{ag} \\
V_{bn} &= V_{bg} \\
V_{cn} &= V_{cg} \\
G &= \:\Rightarrow \:\text{Neutral} \\
V_{an} &= -V_{ng} \\
V_{ab} &= V_{bg} \\
V_{ca} &= V_{cg} \\
V_{ab} &= V_{bg} \\
V_{ah} &= V_{hg}
\end{align*}
\]

- Need L-L voltage rating on insulation

Ungrounded Systems

- Parasitic capacitance in all components
- Resonates with line inductance, often doubles transients over voltage
- Equipment damage may result from voltage, but not likely from fault currents unless a second ground fault occurs
Ungrounded Protection Characteristics

- Low fault currents, some self-extinction
- Poor relay relay response and direction
- Often protect based on voltage
 - Zero sequence or three phase voltage
 - Or loss of injected signal
 - Or capacitive currents in cables
- Detect first ground fault and alarm, since second ground fault has big current

High Impedance Ground: Resistive Type

- Large resistance connected to neutral
- Common in large generator protection (sometimes transformer in neutral)
- Size resistance to limit fault current to 25A or less
- Neutral voltage shifts, over voltage relay connected across resistor
- Poor directional capability
High Impedance Ground: Peterson Coil

- Normal unbalanced operation on distribution line poses problems
- Still need line to line rating on insulation

Impedance Ground

- **Resistance Ground**
 - High R: \(I_f < 10 \text{ A} \)
 - Low R: \(10 \text{A} < I_f < 1000 \text{A} \)
- **Inductive Ground**
 - Zig-zag transformer
 - Poor performance in general
- **Resonant Ground** (ground fault neutralizer)
Low Impedance Ground:

- Limit fault current to 50-600 A
- Current sensing used for relaying and can do direction sensing
- Limit over voltages nearly as well as effective ground
- Sometimes use zig-zag transformer with resistor on neutral (if no R, then magnetizing branch is ground path)

Solid Effective Grounding

- Most popular in North America
- $X_0/X_1 \leq 3$ and $R_0/X_1 \leq 1$ and are positive
- Uni-grounded (Europe) versus multi-grounded (U.S.)
- Best for detecting faults, sensing direction, and fault locating
Solid Ground

- No intentional added impedance
- Ground neutral on WYE
- Ground one corner of Δ
 - Overvoltages $< 1.73 \times V_{in}$ in general
 - Good for fault locating

Earth Electrode

- Impedance:
 - Electrode itself
 - Electrode to earth resistance
 - Earth Resistance
 - Keep very small or
 - Match characteristic impedance of conductors (minimize reflections of fast transients)
 - Keep relatively constant to 50th harmonic
References

- National Electrical Code
- IEEE Green Book