ECE525

Lecture 19

Summary of the Impacts of Grounding on System Protection

Impact of Grounding

Fall 2018

U_{I}

Grounding

ECE525

Lecture 19

- System grounding big impact on ability to detect ground faults
- Common ground options:
 - » Isolated ground (ungrounded)
 - » High impedance ground
 - » Low impedance ground
 - » Solid or effective ground

Impact of Grounding

U_{l}

Purposes of Grounding: National Electrical Code

ECE525
Lecture 19

- Personal Safety (injury, fire...)
- Ensure Operation of Protective Devices
- Noise Control (esp. at high frequency)

Impact of Grounding

Fall 2018

U_{I}

Ground Fault Protection

ECE525

Lecture 19

- Roughly 80% of faults on T&D systems are SLG (single line to ground)
- Ground faults can cause:
 - » Large, damaging or dangerous currents
 - » EMI problems
 - » Voltage sags and interruptions (tripping)
 - » Voltage stresses

Impact of Grounding

Issues with Ungrounded Systems

ECE525

Lecture 19

- No intentional ground on neutral/phases
- Ground fault causes neutral shift

• Need L-L voltage rating on insulation

Impact of Grounding

Fall 2018

U_{I}

Ungrounded Systems

ECE525

Lecture 19

- Parasitic capacitance in all components
- Resonates with line inductance, often doubles transients over voltage
- Equipment damage may result from voltage, but not likely from fault currents unless a second ground fault occurs

Impact of Grounding

Ungrounded Protection Characteristics

ECE525

Lecture 19

- Low fault currents, some self- extinction
- Poor relay relay response and direction
- Often protect based on voltage
 - » Zero sequence or three phase voltage
 - » Or loss of injected signal
 - » Or capacitive currents in cables
- Detect first ground fault and alarm, since second ground fault has big current

Impact of Grounding

Fall 2018

U_{I}

High Impedance Ground: Resistive Type

ECE525

Lecture 19

- Large resistance connected to neutral
- Common in large generator protection (sometimes transformer in neutral)
- Size resistance to limit fault current to 25A or less
- Neutral voltage shifts, over voltage relay connected across resistor
- Poor directional capability

Impact of Grounding

High Impedance Ground: Peterson Coil

ECE525

Lecture 19

- Normal unbalanced operation on distribution line poses problems
- Still need line to line rating on insulation

Impact of Grounding

Fall 2018

$ar{m{U}_{m{I}}}$

Impedance Ground

ECE525

Lecture 19

- Resistance Ground
 - » High R: $(I_f < 10 \text{ A})$
 - » Low R: $(10A < I_f < 1000A)$
- Inductive Ground
 - » Zig-zag transformer
 - » Poor performance in general
- Resonant Ground (ground fault neutralizer)

Impact of Grounding

T	7	•
C	/	7
		L

Low Impedance Ground:

ECE525

Lecture 19

- Limit fault current to 50-600 A
- Current sensing used for relaying and can do direction sensing
- Limit over voltages nearly as well as effective ground
- Sometimes use zig-zag transformer with resistor on neutral (if no R, then magnetizing branch is ground path)

Impact of Grounding

Fall 2018

U_{I}

Solid Effective Grounding

ECE525

Lecture 19

- Most popular in North America
- $X_0/X_1 \le 3$ and $R_0/X_1 \le 1$ and are positive
- Uni-grounded (Europe) versus multigrounded (U.S.)
- Best for detecting faults, sensing direction, and fault locating

Impact of Grounding

7	7	
C	/	7
		L

Solid Ground

ECE525

Lecture 19

- No intentional added impedance
- Ground neutral on WYE
- Ground one corner of Δ
 - » Overvoltages < 1.73 * V_{In} in general
 - » Good for fault locating

Impact of Grounding

Fall 2018

U_{I}

Earth Electrode

ECE525

Lecture 19

- Impedance:
 - » Electrode itself
 - » Electrode to earth resistance
 - » Earth Resistance
 - » Keep very small or
 - » Match characteristic impedance of conductors (minimize reflections of fast transients)
 - » Keep relatively constant to 50th harmonic

Impact of Grounding

U_{I}	References	ECE525 Lecture 19
	onal Electrical Code E Green Book	
Impact of Ground	ling	Fall 2018