Grounding Examples

\[a := 1 \cdot e^{j120^\circ} \]

\[
A_{012} := \begin{pmatrix}
1 & 1 & 1 \\
1 & a & a \\
1 & a & a^2
\end{pmatrix}
\]

MVA := 1000kW \quad \text{pu} := 1

A 4160 V feeder is supplied by the WYE connected side of a 75 MVA transformer. The system \(\text{MVAsc} \) supplying the delta side of the transformer is 650 MVA. The transformer has a leakage reactance of 10%. A ground impedance will be connected in the neutral of 4.16kV side of the transformer to limit fault currents.

A Sketch the per unit diagram for the system

\[\text{MVA} _	ext{base} := 100 \text{MVA} \]

\[\text{Srated} := 75 \text{MVA} \quad \text{V} _	ext{LL} := 4.16 \text{kV} \]

\[\text{V} _	ext{ln} := \frac{\text{V} _	ext{LL}}{\sqrt{3}} \quad \text{V} _	ext{ln} = 2.402 \cdot \text{kV} \]

\[\text{MVAsc} := 650 \text{MVA} \]

\[\text{Xsrc} _\text{pu} := \frac{1.0^2 \cdot \text{MVAsc}}{\text{MVA} _\text{base}} \quad \text{Xsrc} _\text{pu} = 0.154 \cdot \text{pu} \]

\[\text{X} _\text{xfmr} := 0.1 \cdot \left(\frac{4160 \text{V}}{4160 \text{V}} \right)^2 \left(\frac{\text{MVA} _\text{base}}{\text{Srated}} \right) \]

\[\text{X} _\text{xfmr} = 0.133 \cdot \text{pu} \]

\[\text{V} _\text{src} \]

\[\text{X} _\text{src} \]

\[\text{X} _\text{xfmr} \]

\[\text{j}0.154 \text{pu} \]

\[\text{j}0.133 \text{pu} \]
B Determine sequence networks for the system

Positive Sequence:

\[
\begin{align*}
V_{\text{src}} & \quad \text{X}_{\text{src}} \quad \text{X}_{\text{fmr}} \\
j0.154\text{pu} & \quad j0.133\text{pu}
\end{align*}
\]

Negative Sequence:

\[
\begin{align*}
V_{\text{src}} & \quad \text{X}_{\text{src}} \quad \text{X}_{\text{fmr}} \\
j0.154\text{pu} & \quad j0.133\text{pu}
\end{align*}
\]

Zero Sequence:

\[
\begin{align*}
V_{\text{src}} & \quad \text{X}_{\text{src}} \quad \text{X}_{\text{fmr}} \\
j0.154\text{pu} & \quad j0.133\text{pu} \\
& \quad 3Z_{\text{gnd}}
\end{align*}
\]

Note that this is a Δ-Y grounded transformer. Also, assuming that zero sequence leakage impedance equal to positive and negative sequence values.

C Assume that the feeder is all overhead lines with negligible capacitance. Determine the ground reactance needed to limit the single line to ground fault current to 6000A.

\[
\begin{align*}
\text{If}_{\text{slgmax}} & := 6000\text{A} \\
\text{I}_{\text{base}} & := \frac{\text{MVA}_{\text{base}}}{\sqrt{3} \cdot V_{\text{LL}}} \\
\text{I}_{\text{base}} & = 13.88\cdot\text{kA} \\
\text{Z}_{\text{base}} & := \frac{V_{\text{LL}}^2}{\text{MVA}_{\text{base}}}
\end{align*}
\]

\[
\begin{align*}
\text{If}_{\text{pu}} & := \frac{\text{If}_{\text{slgmax}}}{\text{I}_{\text{base}}} \\
\text{If}_{\text{pu}} & = 0.432\cdot\text{pu}
\end{align*}
\]

For a SLG fault we have (connect positive, negative and zero sequence circuits in series):

\[
\begin{align*}
I_0 & = \frac{V_{\text{fault}}}{Z_1 + Z_2 + Z_0 + 3jX_{\text{gnd}}} \\
\text{where} & \\
V_{\text{fault}} & := 1.0 \cdot e^{\text{j} - 90\text{deg}} \\
Z_1 & := jX_{\text{src_pu}} + jX_{\text{xfmr}} \\
Z_2 & := Z_1 \\
Z_0 & := jX_{\text{xfmr}}
\end{align*}
\]

and we know for a SLG fault:

\[
I_0 := \frac{\text{If}_{\text{pu}}}{3}
\]

Solve for \(Z_{\text{gnd}}\)

\[
Z_{\text{gnd}} := \frac{1}{3} \left[\frac{V_{\text{fault}}}{I_0} - (Z_1 + Z_2 + Z_0) \right]
\]

\[
Z_{\text{gnd}} = 2.0772i \quad \text{per unit}
\]
\[X_{\text{gndpu}} := \text{Im}(Z_{\text{gnd}}) \quad X_{\text{gndpu}} = 2.077 \text{ per unit} \]

\[X_{\text{gnd}} := X_{\text{gndpu}} \cdot Z_{\text{base}} \]

\[X_{\text{gnd}} = 0.359 \Omega \]

\[L_{\text{gnd}} := \frac{X_{\text{gnd}}}{2 \cdot \pi \cdot 60 \text{Hz}} \quad L_{\text{gnd}} = 0.954 \cdot \text{mH at 60Hz} \]

D If the feeder is largely underground, the capacitance cannot be neglected. If the total per phase capacitance to ground is 1.5 \(\mu \text{F} \), determine the grounding resistance needed to limit the single line to ground fault current to 20 A.

\[C_{\text{parasitic}} := 1.5 \mu \text{F} \]

\[X_c := \frac{1}{2 \cdot \pi \cdot 60 \text{Hz} \cdot C_{\text{parasitic}}} \quad X_c = 1.768 \cdot \text{k\Omega} \]

\[X_{c_pu} := \frac{X_c}{Z_{\text{base}}} \quad X_{c_pu} = 10218.6 \cdot \text{pu} \]

\[I_{\text{slg_max}} := 20 \text{A} \quad I_{\text{slgpu}} := \frac{I_{\text{slg_max}}}{I_{\text{base}}} \quad I_{\text{slgpu}} = 1.441 \times 10^{-3} \cdot \text{pu} \]

The sequence networks will now change with the addition of the capacitance as shown.
\[I_0 = \frac{V_{\text{fault}}}{Z_1 + Z_2 + \frac{[(Z_0 + 3R_g)(-jX_c)]}{Z_0 + 3R_g - jX_c}} \]

Note that \(Z_1 + Z_2 \) will be much much smaller than the parallel combination of \(3R \) and \(-jX_c\), to that \(Z_1 \) and \(Z_2 \) can be neglected, as can \(Z_0 \).

We also, only care about the magnitude of the reduced current, not the angle.

So we are actually solving:

\[|I_0| = \left| \frac{V_{\text{fault}}}{\frac{[(Z_0 + 3R_g)(-jX_c)]}{Z_0 + 3R_g - jX_c}} \right| \]

which requires an iterative solution.

\[I_0 := \frac{I_{\text{slgppu}}}{3} \]

Initial Guess:

\[R_g := 1000 \]

MathCAD solve block:

Given

\[I_0 - \left| \frac{V_{\text{fault}}}{\frac{(3\cdot R_g + Z_0)(-j\cdot X_c_{\text{pu}})}{(3\cdot R_g + Z_0) - j\cdot X_c_{\text{pu}}}} \right| = 0 \]

\[R_{\text{gndpu}} := \text{Find}(R_g) \]

\[R_{\text{gndpu}} = 708.786 \]

\[R_{\text{gnd}} := R_{\text{gndpu}} \cdot Z_{\text{base}} \quad \text{Rgnd} = 122.66 \Omega \]
E Calculate the line to ground voltages on the unfaulted phases in parts C and D and calculate the zero sequence voltages and currents.

Part C:

\[
I_{0\text{-partC}} := \frac{V_{\text{fault}}}{Z_0 + 3 \cdot jX_{\text{gndpu}} + Z_1 + Z_2}
\]

Part C:

\[
I_{0\text{-partC}} = 0.144 \quad I_{1\text{-partC}} := 10 \cdot I_{0\text{-partC}}
\]

\[
I_{2\text{-partC}} := 10 \cdot I_{0\text{-partC}}
\]

as a check: \[
I_{a\text{-partC}} := 3 \cdot I_{0\text{-partC}} \quad I_{a\text{-partC}} = 0.432 \text{ pu}
\]

\[
V_{1\text{-partC}} := V_{\text{fault}} - I_{1\text{-partC}} \cdot Z_1 \quad V_{1\text{-partC}} = 0.959i
\]

\[
V_{2\text{-partC}} := -I_{2\text{-partC}} \cdot Z_2 \quad V_{2\text{-partC}} = -0.041i
\]

\[
V_{0\text{-partC}} := -I_{0\text{-partC}} \cdot (Z_0 + 3 \cdot jX_{\text{gndpu}}) \quad V_{0\text{-partC}} = -0.917i
\]

\[
V_{\text{abc-partC}} = A_{012} \cdot \begin{pmatrix} V_{0\text{-partC}} \\ V_{1\text{-partC}} \\ V_{2\text{-partC}} \end{pmatrix}
\]

\[
V_{\text{abc-partC}} = \begin{pmatrix} 0 \\ 0.866 - 1.376i \\ -0.866 - 1.376i \end{pmatrix}
\]

\[
|V_{\text{abc-partC}}| = \begin{pmatrix} 0 \\ 1.626 \\ 1.626 \end{pmatrix}
\]

\[
\text{arg}(V_{\text{abc-partC}}) = \begin{pmatrix} 90 \text{ deg} \\ -57.812 \text{ deg} \\ -122.188 \text{ deg} \end{pmatrix}
\]

\[
V_{\text{ln}} \cdot |V_{\text{abc-partC}}| = \begin{pmatrix} 0 \\ 3.905 \text{ kV} \\ 3.905 \text{ kV} \end{pmatrix}
\]

Part D:

\[
Z_{\text{gndD}} := \frac{(3 \cdot R_{\text{gnd-pu}} + Z_0) \cdot (-jX_{\text{c-pu}})}{(3 \cdot R_{\text{gnd-pu}} + Z_0) - j \cdot X_{\text{c-pu}}}
\]

\[
I_{0\text{-partD}} := \frac{V_{\text{fault}}}{Z_{\text{gndD}} + Z_1 + Z_2} \quad I_{0\text{-partD}} = -9.771 \times 10^{-5} + 4.703i \times 10^{-4}
\]

\[
I_{1\text{-partD}} := I_{0\text{-partD}} \quad I_{2\text{-partD}} := I_{0\text{-partD}} \quad |I_{0\text{-partD}}| = 4.804 \times 10^{-4}
\]
as a check: \[I_{a_partD} := 3 \cdot I_{0_partD} \quad |I_{a_partD}| = 1.441 \times 10^{-3} \text{ pu} \]

\[|I_{a_partD}| \cdot I_{\text{base}} = 20.001 \cdot \text{A} \]

\[V_{1_partD} := V_{\text{fault}} - I_{1_partD} \cdot Z_1 \quad |V_{1_partD}| = 1 \]

\[V_{2_partD} := -I_{2_partD} \cdot Z_2 \quad |V_{2_partD}| = 1.38 \times 10^{-4} \]

\[V_{0_partD} := -I_{0_partD} \cdot (Z_{\text{gndD}}) \quad |V_{0_partD}| = 1 \]

\[\begin{bmatrix} V_{0_partD} \\ V_{1_partD} \\ V_{2_partD} \end{bmatrix} = A_{012} \cdot V_{abc_partD} \]

\[\begin{bmatrix} V_{abc_partD} \end{bmatrix} = \begin{bmatrix} 0 \\ 0.866 - 1.5i \\ -0.866 - 1.5i \end{bmatrix} \]

\[|V_{abc_partD}| = \begin{bmatrix} 0 \\ 1.732 \\ 1.732 \end{bmatrix} \]

\[\text{arg}(V_{abc_partD}) = \begin{bmatrix} 107.593 \\ -60.013 \text{ deg} \\ -120.01 \end{bmatrix} \]

\[V_{\ln|V_{abc_partD}|} = \begin{bmatrix} 0 \\ 4.16 \text{ kV} \\ 4.161 \text{ kV} \end{bmatrix} \]

F Compute the single line to ground fault current and the voltage on the unfaulted phases if the transformer is solidly grounded. Calculate the zero sequence voltages and currents.

\[I_{0_gnd} := \frac{V_{\text{fault}}}{Z_0 + Z_1 + Z_2} \quad I_{1_gnd} := I_{0_gnd} \quad I_{2_gnd} := I_{0_gnd} \]

\[I_{a_gnd} := 3 \cdot I_{0_gnd} \quad |I_{a_gnd}| = 4.239 \text{ per unit} \]

\[I_{a_gnd} \cdot I_{\text{base}} = 58.833 \cdot \text{kA} \]

\[V_{1_gnd} := V_{\text{fault}} - I_{1_gnd} \cdot Z_1 \quad V_{1_gnd} = 0.594i \]

\[V_{2_gnd} := -I_{2_gnd} \cdot Z_2 \quad V_{2_gnd} = -0.406i \]

\[V_{0_gnd} := -I_{0_gnd} \cdot Z_0 \quad V_{0_gnd} = -0.18841i \]
G For the different grounded cases described above, discuss the available quantities to measure for ground fault protection and suggest a scheme to consider (based on voltage, current, etc).

For the high resistance grounded case, there isn't enough current available for doing ground fault protection, but V_0 is 1pu, so there is enough voltage available to use that to identify the presence of a ground fault.

For the case with the low inductance grounded, there is sufficient I_0 for detecting a fault, although any fault impedance (resistance) may make this too difficult. There is also probably sufficient V_0 to use that to detect the fault.

For the solidly grounded case, V_0 is pretty small, and it might be hard to discriminate sufficiently to identify a fault. On the other hand, I_0 is large.

\[
\begin{align*}
V_{\text{abc}} := A_{012} & \begin{pmatrix}
V_{0_\text{gnd}} + 10^{-16} \\
V_{1_\text{gnd}} \\
V_{2_\text{gnd}}
\end{pmatrix} \\
V_{\text{abc}} &= \begin{pmatrix}
0 \\
0.866 - 0.283i \\
-0.866 - 0.283i
\end{pmatrix} \\
|V_{\text{abc}}| &= \begin{pmatrix}
0 \\
0.911 \\
0.911
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{arg}(V_{\text{abc}}) &= \begin{pmatrix}
0 \\
-18.073 \\
-161.927
\end{pmatrix} \cdot \text{deg}
\end{align*}
\]

Note that V_b and V_c are nearly 1.0 per unit, and are slightly depressed. If $Z_0=Z_1=Z_2$ then they would be 1.0 and offset from each other by 120 degrees.