I_{P1} = 40 + 150 + 50 + 60 = 300

I_{0} = 0

1.067 \times 0.705 = 0.701 \times 0.705 + 1.067 \times 0.705 = 0.701 + 0.705 + 1.067

I_{1} = 0

I_{0} = |I_{1}| + |I_{3}|

Assuming no saturation.

Currents will be IC motor load.

60 \times 7 \times 5 =

40 \times 0.9 \times 2

260 \times 0.9 \times 2

150 \times 0.9 \times 0
$S_{0.2} = 0.2 \times 2.0 = \frac{200}{4} = 50$

$H_r = 250$

$T = 50$

$L = 30 + 100 + 80 + 100 = 310$

Repeat F1: CT saturates by $\frac{1}{3}$

$\frac{10}{3}$ easy error to keep math clean
\[
\frac{I_{op}}{I_{RT}} = 1 \quad I_{op} > SLP \cdot I_{RT}
\]
\[\theta_1 = 170 \]

\[\theta_0 = 40^\circ L - 90^\circ + 20^\circ E - 90^\circ + 50^\circ E - 90^\circ + 60^\circ S - 90^\circ \]

External Fault

Internal Fault

\[20^\circ L - 90^\circ \]
10004

10004

10004

30004

Go Station

Useful

CTS - Marketing CTS is
Scheme we first discussed is 1

- Filtered quantities also slows rely a bit
- Steepen slope for saturation
- Steepen slope for normal creation
- Settle slope to compensate for normal creation.
- differential scheme refers to a low impedance
Differential Protection
High Impedance Bus

2.

- Location
- Linear Couplers
- Optical CT
- Fibre Optic Cables
- 1 CTS that don't saturate

Other Options
Critical to have matched CTs

Assumes that a CT will saturate for external fault - encourages it to saturate

Leaves impedance than ramp

External fault - all current goes into magnetizing branch

Saturates if Saturates if
Something CT for arrester fault.

Setting?

Threshold set about voltage.

V sees up quickly.

How address internal fault?
- Mapping and analysis
- Zero
- Transformation inside differentiated path
- Un measured current
- Current error
- Configurations / uploaded / incornets
- Bus and neutral status
- Other challenges
Go from life pass von life digital off others Breake

Surge circuit inside