Comparing Primary and Secondary Ohms and Converting to Per Unit on Secondary When CTR and VTR Don't Cancel

- First look at a regular transformer

We know the following:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~N}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~N}_{2}} \quad \text { which can be rearranged as: } \quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\mathrm{VTR}
$$

Similarly (using power transformer polarity)

$$
\mathrm{I}_{1} \cdot \mathrm{~N}_{1}-\mathrm{I}_{2} \cdot \mathrm{~N}_{2}=0 \quad \text { which can be rearranged as: } \quad \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\mathrm{CTR}
$$

- Now if we wanted to relate an impedance across the transfomer

$$
\mathrm{Z}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}=\frac{\mathrm{V}_{1} \cdot\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}\right)}{\mathrm{I}_{1} \cdot\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}} \cdot\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}\right)^{2}=\mathrm{Z}_{1} \cdot\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N} 1}\right)^{2} \quad \text { This is how we usually view this... }
$$

Alternate simplification

$$
\mathrm{Z}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}=\left[\frac{\mathrm{V}_{1} \cdot\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}\right)}{\mathrm{I}_{1} \cdot\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)}\right]=\frac{\mathrm{V}_{1} \cdot \mathrm{CTR}}{\mathrm{I}_{1} \cdot \mathrm{VTR}}=\mathrm{Z}_{1} \cdot \frac{\mathrm{CTR}}{\mathrm{VTR}}
$$

- In the case of the measurements seen at the protective relay, the voltages are stepped down through a set of voltage transformers with little current (which is not measured)
- And the currents are stepped down through a separate set of current transformers with the voltage not measured
- The measured voltage and current go into different inputs to the relay
- The relay "sees" and effective secondary impedance based on the voltages and currents stepped down by these separate VTs and CTs
- This will be more important when we look at distance relays, but it also matters for fault location calculations

Example

$$
\begin{aligned}
& \mathrm{Z}_{\text {line_primary }}:=(5+\mathrm{j} \cdot 50) \mathrm{ohm} \\
& \mathrm{VTR}:=\frac{345 \mathrm{kV}}{120 \mathrm{~V}} \\
& \text { CTR }:: \frac{800 \mathrm{~A}}{5 \mathrm{~A}}
\end{aligned}
$$

- Now find the effective secondary line impedance.

$$
\begin{aligned}
& \mathrm{Z}_{1}:=\mathrm{Z}_{\text {line_primary }} \\
& \mathrm{Z}_{2}:=\mathrm{Z}_{1} \cdot \frac{\mathrm{CTR}}{\mathrm{VTR}} \quad \mathrm{Z}_{2}=(0.28+2.78 \mathrm{i}) \Omega \quad \mathrm{Z}_{\text {line_secondary }}:=\mathrm{Z}_{2}
\end{aligned}
$$

If we had a three phase fault at the far end of the transmission line, then taking V/I

What does this do to per unit analysis?

- Note that our conventional idea of per unit analysis is no longer accurate

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{BLV}}:=\frac{120 \mathrm{~V}}{\sqrt{3} \cdot 5 \mathrm{~A}} \quad \mathrm{Z}_{\mathrm{BLV}}=13.86 \Omega \\
& \mathrm{Z}_{\mathrm{BHV}}:=\frac{345 \mathrm{kV}}{\sqrt{3} \cdot 800 \mathrm{~A}} \mathrm{Z}_{\mathrm{BHV}}=248.98 \Omega \\
& \mathrm{Z}_{\mathrm{pu}}:=\frac{\mathrm{Z}_{\text {line_secondary }}}{\mathrm{Z}_{\mathrm{BLV}}} \quad \mathrm{Z}_{\mathrm{pu}}=0.02+0.2 \mathrm{i} \\
& \mathrm{Z}_{\mathrm{pu}} \cdot \mathrm{Z}_{\mathrm{BHV}}=(5+50 \mathrm{i}) \Omega
\end{aligned}
$$

MVA := 1000kW

Incorrect way:

$\mathrm{Sb}:=100 \mathrm{MVA} \quad \mathrm{Z}_{\mathrm{bLV}}:=\frac{(120 \mathrm{~V})^{2}}{\mathrm{Sb}} \quad \mathrm{Z}_{\mathrm{bLV}}=1.44 \times 10^{-4} \Omega$
$\mathrm{Z}_{\mathrm{bHV}}:=\frac{(345 \mathrm{kV})^{2}}{\mathrm{Sb}} \quad \mathrm{Z}_{\mathrm{bHV}}=1190.25 \Omega$
$\mathrm{Z}_{\text {line_secondary }} \cdot \frac{\mathrm{Z}_{\mathrm{bHV}}}{\mathrm{Z}_{\mathrm{bLV}}}=\left(2.3 \times 10^{6}+2.3 \mathrm{i} \times 10^{7}\right) \Omega$
They are in secondary ohms. Because we have two different transformer ratios (that are determined independently based on primary voltage and current), the normal practice of finding impedance bases from a MVA base and a voltage base is not accurate.

