ECE 525

POWER SYSTEM PROTECTION AND RELAYING

SESSION no. 5

Comparing Primary and Secondary Ohms and Converting to Per Unit on Secondary When CTR and VTR Don't Cancel

First look at a regular transformer

We know the following:

V= Note that $\frac{V_1}{N_1} = \frac{V_2}{N_2}$ which can be rearranged as: $\frac{V_1}{V_2} = \frac{N_1}{N_2} = VTR$ Visibility (using power transformer polarity) $I_1 \cdot N_1 - I_2 \cdot N_2 = 0$ which can be rearranged as: $\frac{I_1}{I_2} = \frac{N_2}{N_1} = CTR$

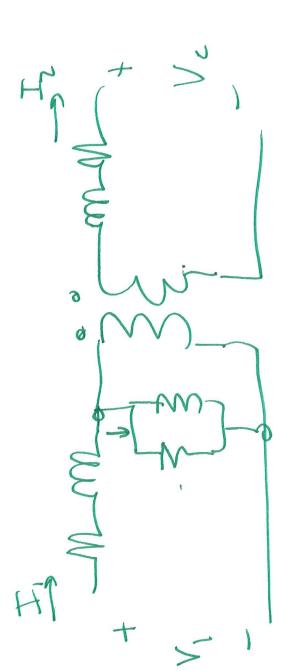
$$\frac{V_1}{V_2} = \frac{N_1}{N_2} = VTR$$

$$\frac{I_1}{I_2} = \frac{N_2}{N_1} = \underline{CTR}$$

Now if we wanted to relate an impedance across the transfomer

$$Z_2 = \frac{V_2}{I_2} = \frac{V_1 \cdot \left(\frac{N_2}{N_1}\right)}{I_1 \cdot \left(\frac{N_1}{N_2}\right)} = \frac{V_1}{I_1} \cdot \left(\frac{N_2}{N_1}\right)^2 = Z_1 \cdot \left(\frac{N_2}{N_1}\right)^2$$
 This is how we usually view this...

Alternate simplification


$$Z_2 = \frac{V_2}{I_2} = \left\lceil \frac{V_1 \cdot \left(\frac{N_2}{N_1}\right)}{I_1 \cdot \left(\frac{N_1}{N_2}\right)} \right\rceil = \frac{V_1 \cdot \overrightarrow{CTR}}{I_1 \cdot VTR} = Z_1 \cdot \frac{\overrightarrow{CTR}}{\overrightarrow{VTR}}$$

Alternate simplification $Z_2 = \frac{V_2}{I_2} = \left[\frac{V_1 \cdot \left(\frac{N_2}{N_1} \right)}{I_1 \cdot \left(\frac{N_1}{N_2} \right)} \right] = \frac{V_1 \cdot \text{CTR}}{I_1 \cdot \text{VTR}} = Z_1 \cdot \frac{\text{CTR}}{\text{VTR}}$ The case of the measurements seen at the protective relay, the voltages are stepped down out to the currents are stepped down.

- In the case of the measurements seen at the protective relay, the voltages are stepped down through a set of voltage transformers with little current (which is not measured)
- And the currents are stepped down through a separate set of current transformers with the voltage not measured
- The measured voltage and current go into different inputs to the relay
- The relay "sees" and effective secondary impedance based on the voltages and currents stepped down by these separate VTs and CTs
- This will be more important when we look at distance relays, but it also matters for fault location calculations

- and desired rated current - Cased on the rated current in the primary curcuit (TTS are SIZED (CTRE) - SA rms on secondon

VTS have VTR SIZEd based - On primary vollage - Secondary vollage

Current Transformers

ECE525

Lecture 5

- CT Basics
 - » Construction
 - » Theory of Operation
 - » Polarity
 - » Equivalent Circuit Model
 - » Accuracy
- a saturation CT Transient Performance
- Impact on relay element performance

Current Transformers

Fall 2018

U_{I}

CT Construction

ECE525

Lecture 5

- Bar-Type
 - » A fixed insulated straight conductor that is a single primary turn passing through a core assembly with a permanently fixed secondary winding.
- Bushing Type
 - » A secondary winding insulated from and permanently assembled on an annular core with no primary winding or insulation for a primary winding.

Current Transformers

CT Construction

ECE525

Lecture 5


Window Type

» A secondary winding insulated from and permanently assembled on the core with no primary winding but with complete insulation for a primary winding.

Wound Type

» A primary and secondary winding insulated from each other consisting of one or more turns encircling the core. Constructed as multi-ratio CTs by the use of taps on the secondary winding.

Current Transformers

CT Construction

ECE525

Lecture 5

1. Oil Filling Valve.

- 2. Gas Cushion. An hermetically sealed expansion system compensates for any volume changes due to temperature variations. Nitrogen gas is used.
- 3. Quartz Filling. The free space inside the transformer is filled with clean dry quartz sand. The quartz sand reduces the amount of oil required inside the transformer thereby ensuring a long life for the insulating paper (Kraft paper). The quartz sand, in addition to providing isolation, also provides mechanical strength for the transformer core and primary winding.
- 4. Capacitive Voltage Tap. A tap is brought out from the second to the last capacitive layer in the HV insulation through a bushing on the transformer tank. It is used to check condition of the insulation by measuring the loss angle (commonly known as the $tan\delta \Rightarrow tan \delta$ = ε "/ ε '). It can also be used for voltage indication.

Note: Due to its low capacitive value, the output is limited, (cannot drive a protective relay from this tap)..

Current Transformers

Fall 2018

ECE525

Lecture 5

- 5. Primary Conductor. The primary winding consists of one or more parallel aluminum (Al) or copper (Cu) bars bent in a hairpin shape as shown. (therefore, the name hairpin CT).
- 6. Paper Insulation. The conductor(s) is insulated with a special paper (Kraft paper). This paper has a high dielectric and mechanical strength. It has a low dielectric loss (low tan δ) and has a good resistance to aging. The winding is dried and heated in a vacuum before assembly.
- 7. Expansion Vessel. A nitrogen gas cushion is used for this purpose because the tank-type design provides a large distance between the active part and the expansion vessel. In addition, the quartz filling significantly reduces the oil volume inside the transformer and a relatively large gas volume minimizes pressure variations. This type of expansion system increases operating reliability and minimizes the need of maintenance and inspections.
- 8. Oil Sight Glass.
- 9. Primary Terminal

Current Transformers

Theory of Operation

ECE525

Lecture 5

Since the magnetic flux is proportional to the mmf we get:

$$F_e = F_p - F_s \text{ or}$$

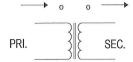
$$V_e * N_p = I_p * N_p - I_s * N_s \text{ dividing by } N_s$$

$$V_e * N_p/N_s = I_p * N_p/N_s - I_s$$

$$V_s = I_p * N_p/N_s \text{ if } I_e \text{ is small}$$

Current Transformers

Fall 2018


U_{I}

Polarity

ECE525

Lecture 5

- The CT primary and secondary terminal is physically marked with a polarity.
- The marking indicates the instantaneous direction of the secondary current in relation to the primary current.
- When current flows in at the marked primary, current is flowing out of the marked secondary:

Hint: Direction of the secondary current can determined as if the two polarity terminals formed a continuous circuit

Current Transformers

Fall 2018

M

Basic Transformer V:=iR-e v:=iR-e $e:=-N\frac{d\phi}{dt} \qquad \phi:=\phi_{MAX}\cdot \sin(\varpi t)$ $e:=-\varpi\cdot N\cdot \phi_{MAX}\cdot \cos(\varpi t) \qquad B:=\phi\cdot Area$ $e:=-\omega\cdot N\cdot B_{MAX}\cdot A\cdot \cos(\varpi t) \qquad \varpi:=2\pi f$ $E:=4.44\cdot N\cdot B_{MAX}\cdot f\cdot A\cdot$ Current Transformers

U_{I}

Theory of Operation

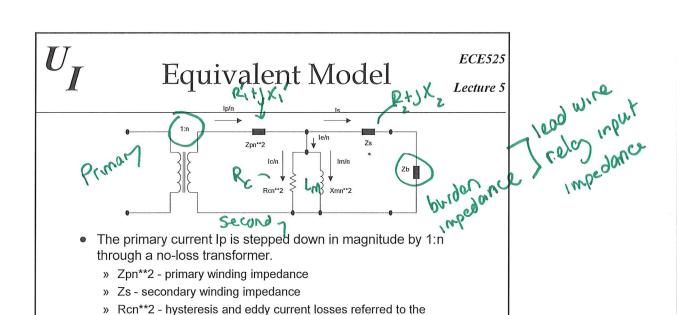
ECE525

Lecture 5

- When a time varying current I_p flows, a magnetomotive force (mmf) is developed by: MMF = I_p * N_p.
- The primary mmf creates a magnetic flux Φ_p in the core given by: $\Phi_p = \text{MMF/R}_m$ where R_m is the core reactance.
- The direction of Φ_p is determined by the right hand rule.
- Φ_p Links the secondary winding, inducing an electromotive force E_s (emf), resulting in a secondary current Is flowing through burden Z_b .

Current Transformers

Equivalent Model

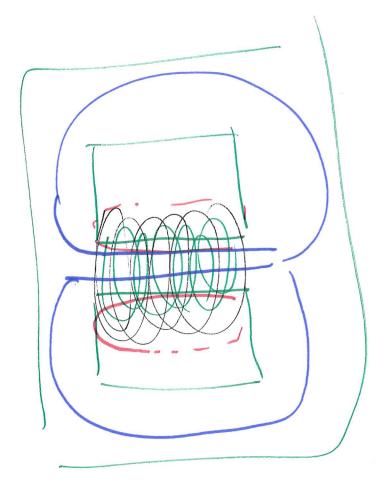

ECE525

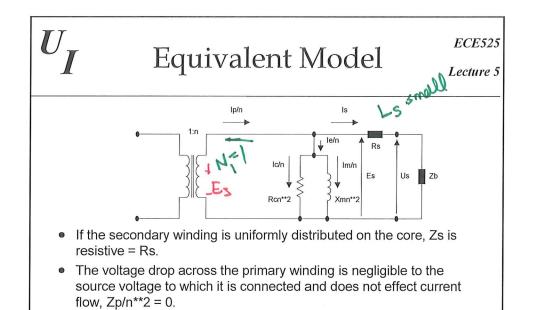
Lecture 5

- The transformation of current induces errors.
 Some energy form the primary winding is used to:
 - » Establish magnetic flux in the core.
 - » Change the direction of the magnetic flux in the core named hysteresis losses.
 - » Generate heat due to eddy currents.
 - » Establish leakage flux.
- To account for losses a fictitious component is introduced, the exciting current le.

Current Transformers

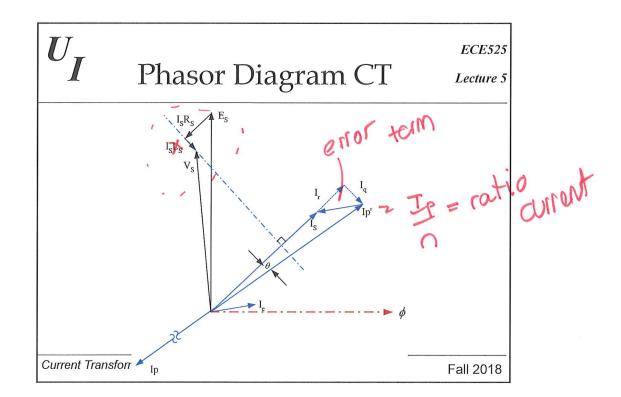
Fall 2018

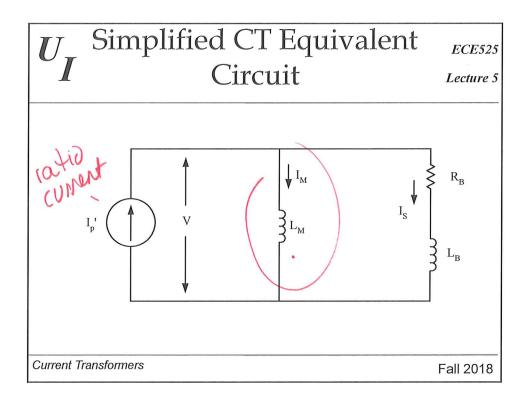



Xmn**2 - magnetic reactance accounting for losses to establish flux

Current Transformers

secondary


referred to the secondary



 The secondary current is reduced by the shunting current of the exciting branch. The greater le the less accurate is represents ip.

Current Transformers

From Simplified Circuit $V = N_S \dot{\phi} = L_M \dot{I}_M \dots (1)$ $V = N_S \dot{\phi} = R_S \dot{I}_S + L_S \dot{I}_S \dots (2)$ From equation (1) $L_M \cdot \dot{I}_M := N_S \cdot \dot{\phi}$ $L_M := N_S \cdot \frac{\dot{\phi}}{I_M}$ $L_M := N_S^2 \cdot \frac{\Delta B \cdot A}{\Delta H \cdot I}$ Current Transformers Fall 2018

Magnetizing Inductance

ECE525

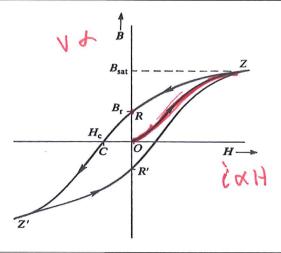
Lecture 5

$$L_{M} = N_{S}^{2} \frac{\mu A}{\ell}$$

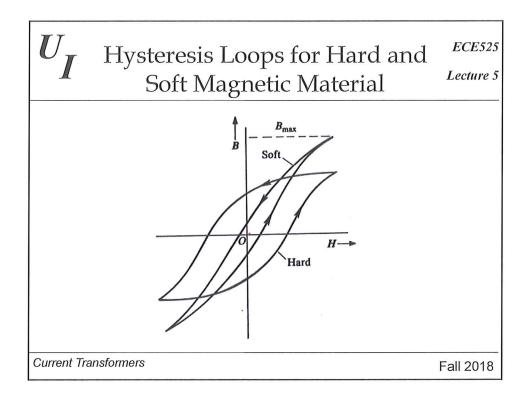
$$L_{M} := \frac{N_{s}^{2}}{\Re}$$

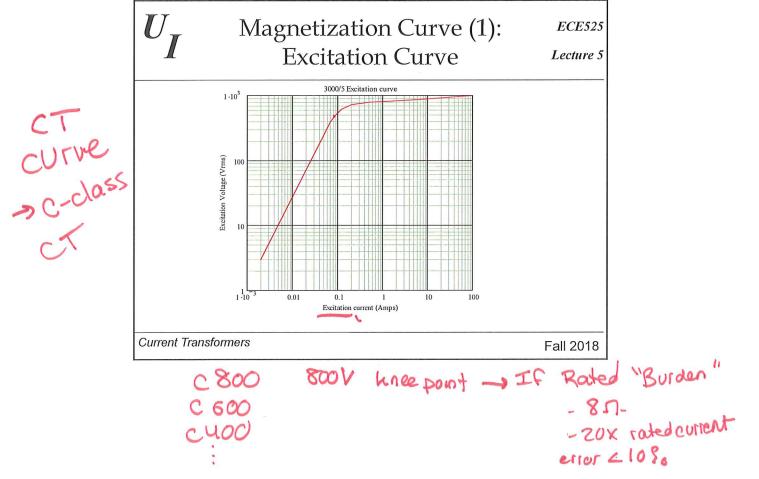
where:

$$\mu = \frac{dB}{dH} := \frac{\Delta B}{\Delta H}$$
 A = Area
$$\ell = length$$


A = Area

 $\Re = Reluctance$

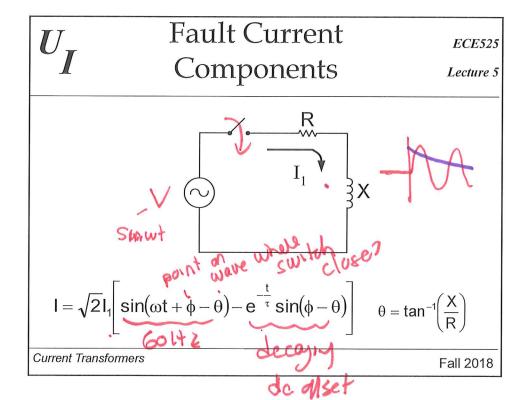


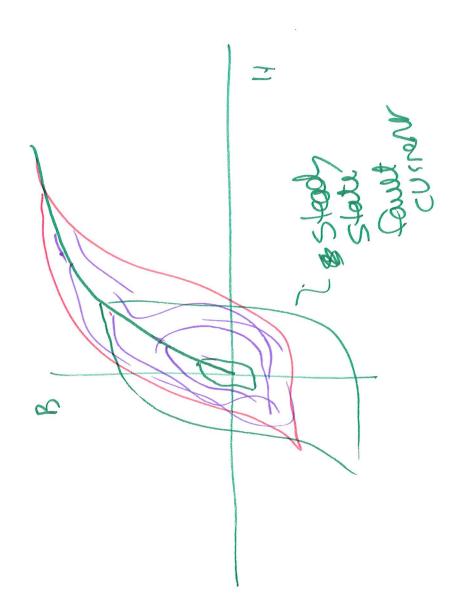

Fall 2018

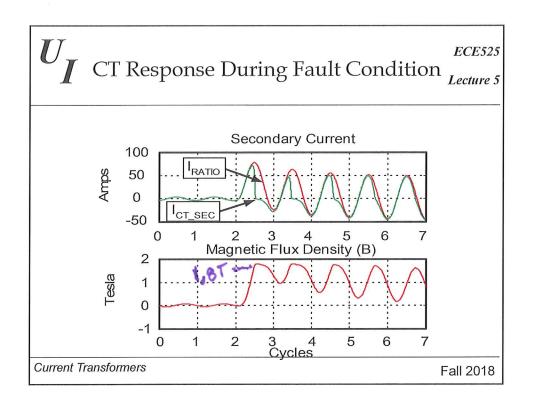
Complete Hysteresis Loop of ECE525 Ferromagnetic Material Lecture 5

Current Transformers

Flux Density and Secondary Current


ECE525


Lecture 5


$$\dot{\tilde{B}} = \frac{\mu \left(N_P L_S \dot{\tilde{I}}_P + N_S R_S I_S \right)}{\ell L_S + N_S^2 \mu A}$$


$$\dot{I}_{S} = \frac{N_{P}N_{S}\mu A \dot{I}_{P} - \ell R_{S}I_{S}}{\ell L_{S} + N_{S}^{2}\mu A}$$

Current Transformers

