

Overview

- Basics on CT saturation
 - DC-offset
 - Remanence
 - saturation free time < 7ms</p>
- ■Influence of CT saturation on protection
- Stabilization methods for differential protection
- Summery

Current transformer equivalent circuit and magnetising characteristic

Voltage and flux under unsaturated condition

Saturated condition

Specification of saturation flux by Vknee

The knee point voltage is the highest exciting voltage generated by a **symmetrical** secondary short circuit current on which the flux in the CT will not reach the saturation flux.

Dimensioned for the maximum symmetrical short circuit current

Example: Isc=20000A, CT ratio =1000/5, RCT=0.5 Ohm, Rb=0.5 Ohm Vexciting max=Isc(sec)*(RCT+Rb)=100A*1Ohm=100V Selected CT has Vknee=100V

To avoid saturation->
$$V_{\mathit{knee}} = 2*I_{\mathit{sc}}(R_{\mathit{CT}} + R_{\mathit{b}})$$

Prove of overdimension factor of 2

$$Flux = \int v_{\mu}(t)dt$$
$$= \int i_{s}(t) \cdot (R_{CT} + R_{b})dt$$

for
$$i_s(t) = I \sin(\omega t)$$

$$Flux = I \cdot (R_{CT} + R_b) \int \sin(\omega t) dt$$

Solution for
$$\int \sin(\omega t)dt = -\frac{1}{\omega}\cos(\omega t) + C$$

$$\begin{aligned} 1. & Flux = 0 & for \ t = 0 & \Rightarrow & C = 1 \\ 2. & Flux = \frac{-I \cdot (R_{CT} + R_b)}{\omega} & for \ t = 1 \ cycle & \Rightarrow & C = 0 \end{aligned}$$

$$\begin{aligned} Flux_{t=0} &= \frac{I \cdot (R_{CT} + R_b)}{\omega} (1 - \cos(\omega t)) & Flux_{t=1 \, cycle} &= -\frac{I \cdot (R_{CT} + R_b)}{\omega} \cos(\omega t) \\ &\max(Flux_{t=0}) &= 2\frac{I \cdot (R_{CT} + R_b)}{\omega} & \max(Flux_{t=1 \, cycle}) &= \frac{I \cdot (R_{CT} + R_b)}{\omega} \end{aligned}$$

overdimension factor =
$$\frac{\max(Flux_{t=0})}{\max(Flux_{t=1cycle})} = 2$$

DC-Offset

$$Flux = \int v_{\mu}(t)dt$$
$$= \int i_{s}(t) \cdot (R_{CT} + R_{b})dt$$
$$i_{s}(t) = I\left(e^{-\frac{t}{T_{p}}} - \cos(\omega t)\right)$$

For no saturation at all: Set t=infinitive and $-\sin(wt)=1$

$$V_{knee} = I(R_{CT} + R_b) \big[1 + \omega T_p \big] or$$

$$V_{knee} = I(R_{CT} + R_b) \left[1 + \frac{X}{R} \right]$$

Remanence

The flux inside the CT will not go to zero after the fault current is interrupted!

Considering remanence flux

$$K_{\text{Remanece}} = \frac{100}{100 - \text{Prozent of Remanence}}$$

Example: Worst case of remanence (iron closed CT's) = 80%

$$K_{\text{Re}\,manece} = \frac{100}{100 - 80} = 5$$

CT dimensioning for no saturation under all worst case condition

Example: Isc=20000A, CT ratio =1000/5, RCT=0.5 Ohm, Rb=0.5 Ohm Tp=60ms, iron closed CT

1. considering DC offset

$$V_{knee} = I(R_{CT} + R_b)[1 + \omega T_p]$$

$$V_{knee} = 100A \cdot 10hm(1 + 22.6) = 2260V$$

2.considering 80% remanence

$$K_{\text{Re}manece} = \frac{100}{100 - 80} = 5$$
 $\Rightarrow V_{\text{knee}} = 5 \cdot 2260V = 11300V$

The dimension of a CT that will not saturate for the maximum short circuit current that has a full DC offset with a long time constant and is at 80% in remanence, will lead to uneconomical and oversized CT's.

With consideration of saturation free time tsat

The requirement that no saturation is allowed will lead to uneconomical and oversized CT's

$$V_{knee} = I(R_{CT} + R_b) \left[1 + \frac{X}{R} \right]$$

Modern numerical relays only require a certain saturation free time tsat. The following formula takes this into consideration:

$$V_{knee} = I(R_{CT} + R_b) \left\{ \left[-\omega T_p \left(e^{\frac{t_{sat}}{T_p}} - 1 \right) - \sin(\omega t_{sat}) \right\} \right\}$$

Many times a simplified version where -sin(wt) is replaced by 1 is used

$$V_{knee} = I(R_{CT} + R_b) \left\{ \left[-\omega T_p \left(e^{\frac{-I_{sat}}{T_p}} - 1 \right) + 1 \right\} \right\}$$

What does the different formulas describe?

$$V_{knee} = I(R_{CT} + R_b) \left\{ \left[-\omega T_p \left(e^{\frac{I_{sat}}{T_p}} - 1 \right) + 1 \right\} \right\}$$

$$V_{knee} = I(R_{CT} + R_b) \left[1 + \frac{X}{R} \right]_{16}^{18}$$

$$V_{knee} = I(R_{CT} + R_b) \left[-\omega T_p \left(e^{\frac{I_{sat}}{T_p}} - 1 \right) - \sin(\omega t_{sat}) \right]$$
Special consideration

needed

tsat (saturation free time)

Saturation free times < 7ms

Flux for saturation free time <7 ms

Which formula should be applied

No saturation
$$V_{knee} = I(R_{CT} + R_b) \left[1 + \frac{X}{R} \right]$$

Saturation free time > 12ms
$$V_{knee} = I(R_{CT} + R_b) \left\{ \left[-\omega T_p \left(e^{-\frac{I_{sat}}{T_p}} - 1 \right) + 1 \right] \right\}$$

Saturation free time between 7-12 ms
$$V_{knee} = I(R_{CT} + R_b) \left\{ \left[-\omega T_p \left(e^{\frac{-t_{sat}}{T_p}} - 1 \right) - \sin(\omega t_{sat}) \right] \right\}$$

Saturation free time < 7ms
$$V_{knee} = I(R_{CT} + R_b)[1 - \cos(\omega t_{sat})]$$

Influence of CT saturation on protection

Distance protection

- Close in faults
 - Direction has to be correct
 - High speed tripping decision before saturation
- Zone end fault
 - Accuracy and timing will be effected

Overcurrent protection

- based on RMS or fundamental
- 50 element not influenced if remaining current is above pickup
- 51 element experienced an additional time delay

Differential protection

Critical for the security of the protection!

Differential protection

Differential protection with CT saturation

Small currents with long DC time constant

Summary

- ■By specifying a CT the following must be considered:
 - Max fault current
 - CT burden
 - DC time constant
 - Remanence
 - Required saturation free time
- Saturation free time must be specified by each relay manufacturer
- Small current with long DC time constant can also cause saturation
- Modern numerical relays using intelligent algorithms can deal with CT saturation much better their electromechanical and analog static predecessors

Questions

