
ECE 525: Homework #3

Due Session 15 (Oct 9)

1. For the capacitively coupled voltage transformer (CCVT, also known as a capacitive voltage transformer or CVT) circuit below do the following:

- A. Determine a Laplace domain transfer function for the relay voltage (the voltage across the load resistance R0) in response to a change in the input voltage. You might find the references linked with the CCVT lectures on the web page very useful.
- B. Plot the frequency response of the magnitude of the output voltage from 20Hz to 25th harmonic of 60Hz.
- C. Plot the responses for the output voltage versus time for the two sets of CCVT parameters listed below using a circuit simulation program when the primary voltage goes to zero due a fault occuring at a voltage peak with an ideal source. Determine analytical result for extra credit. You are encouraged to use a transient circuit simulation tool
- D. Plot the responses for the output voltage versus time for the two sets of CCVT parameters listed below using a circuit simulation program when the primary voltage goes to zero due a fault occuring at at a voltage zero (again, ideal source). Determine analytical result for extra credit.

CCVT 1 (medium C (energy) CCVT)

$R_0 = 1.03997 \cdot 10^5$	— load resistance, Ω
$L_{\rm f} = 315.3$	 — suppression inductance, H
$C_{\rm f} = 0.0285 \cdot 10^{-6}$	 — suppression capacitance, F
$R_{\rm f} = 77379$	 — suppression resistance, Ω
R = 3289	— resistance, Ω
$C = 9.1605 \cdot 10^{-8}$	
L = 76.136	- inductance, H

CCVT 2 (high C (energy) CCVT)

$R_0 = 2.08584 \cdot 10^5$	— load resistance, Ω
$L_{\rm f} = 616.35$	 — suppression inductance, H
$C_{\rm f} = 0.01134 \cdot 10^{-6}$	- suppression capacitance, F
$R_{\rm f} = 148519$	 — suppression resistance, Ω
R = 1536	— resistance, Ω
$C = 0.162442 \cdot 10^{-6}$	- sum of dividing capacitances, F
L = 48.136	— inductance, H