

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 3

1

1

Today...

- Power electronics review
- Common devices and topologies
- Some PQ issues with power electronics
- PQ Terminology

We're in PSQ ch. 2 and 5, FPQ ch 2 and 6

2 Lecture 3

What are Power Electronics?

- Power electronics refers to devices employing semiconductors to convert and control electrical energy
- Types of voltage conversions:
 - Magnitude
 - Frequency
 - Number of phases

3 Lecture 3

3

Why are power electronics important to PQ?

- The use of power electronic devices continues to increase
- They cause harmonic distortion
- The presence of harmonic distortion from power electronics can affect the power system and other loads
- Power electronic devices have particular vulnerabilities when it comes to PQ

4 Lecture 3

Δ

University of Idaho Harmonics - from AC to DC conversion (Rectification) The basic rectifier with capacitor Input AC Note - current is Voltage "non-linear" V dc Input AC V in (ac) Current DC Voltage Rectified Voltage Current between rectifier and capacitor Lecture 3

Controlling the output: A regulated, linear DC power supply

We want the dc output voltage to be nearly constant despite load variations and supply voltage variations.

Transistor operated in active region as a variable resistor – varies voltage drop to regulate output voltage.

9 Lecture 3

9

Losses in the linear dc supply

- Vo < Vdc (output voltage < capacitor voltage)
- The power dissipated in the load is: Vo*Io
- The power dissipated in the transistor is: Pswitch=(Vdc-Vo)lo
- If $Vo = \frac{1}{2} Vdc$, then $Pswitch = \frac{1}{2} (Vdc) Io$
- The "switch mode" supply reduces losses significantly.

10 Lecture 3

Controlling the output: Switch mode power supplies

Transistor is operated as a **switch**; either on, or off.

Advantages:

Reduced losses and weight

More tolerant of input voltage variations

Disadvantages

High switching frequency -interference

Increased complexity

11 Lecture 3

11

Topologies of converters

• The variable frequency drive (VFD, ASD, VSD)

• See PSQ pages 214-223 or FPQ pages 201-205

13 Lecture 3

13

Some PQ issues with power electronics

Impact on line voltage

Distorted voltage results in distorted current, even in linear loads.

"Flat-topping" reduces DC bus voltage in power supplies, reducing ride-through time of electronic loads during voltage sags.

Lecture 3

14

University

Some PQ issues with power electronics

- Other line-side issues
 - Higher frequencies
 associated with harmonics
 and high switching
 frequencies can increase
 capacitive coupling.
 - Line voltage notching if rectifier uses thyristors

15 Lecture 3

15

Power electronics vulnerabilities • Capacitor switching. What will happen when this voltage waveform passes through the rectifier and into the dc bus capacitor?

Universit

Load-side issues

• Primary issue is the fact that the "ac" output from a converter contains high frequency components.

 Voltage output of a small UPS.

17

17

Special problem with PWM drives

- A Pulse Width Modulated VFD can effectively vary both the voltage and frequency of its output signal.
- This is done by varying the width of output voltage pulses.
- Rise time can be 0.1 microsecond.
- If the motor leads are "long," voltage reflections can lead to increased voltages at the motor terminals.

19 Lecture 3

19

Voltage reflections in PWM drives

Normal leading edge of PWM voltage pulse

Leading edge of PWM voltage pulse with reflected voltage

20 Lecture 3

Problems for the investigator

- Some handheld meters may give misleading readings for distorted waveforms.
- Average responding meters may read values significantly higher or lower than the True-RMS values of voltage and current, depending on the wave shape.
- Some problems, such as high frequency voltage reflections may require oscilloscopes or other more specialized monitoring equipment.

21 Lecture 3

21

Terms and definitions

- Allow engineers to discuss issues, search for information, etc.
- Problem Most of the public including engineers outside of power quality are not familiar with power quality terms and their definitions.
- They all have names:

22 Lecture 3

Ambiguous terms

Brownout Dirty Power
Glitch Gean Ground Spike
Glean Power Surge
Blip Power Bump

23 Lecture 3

23

Four general types of disturbances (IEC)

• Conducted low freq.

Harmonics

Sags/swells/interruptions

Imbalance

DC offset

Conducted High freq.

Transients

Induced high frequency signals

See FPQ p. 17 or PSQ p. 16

Radiated low freq.

Electric and magnetic fields

Radiated High freq.
 Electric and magnetic fields

24

Lecture 3

Categories based on duration (IEEE)

• Transients nanoseconds to 3 cycles

Short duration

- Instantaneous 0.5 - 30 cycles

Momentary30 cycles – 3 seconds

- Temporary 3 s - 1 minute

• Long duration > 1 minute

Steady State

See Table 2.2 in either text

25 Lecture 3

25

University

Describing transients:

- Impulsive
 - Peak magnitude
 - Time to rise/time to return to 50% of peak
 - A 1.2kV, 1.2/50ns impulsive transient
- Oscillatory
 - Frequency
 - Duration
 - Maximum absolute value
 - A 720Hz, quarter-cycle, 1.3pu oscillatory transient

27 Lecture 3

27

29

Clearly describing sags, undervoltage, swells, and overvoltage

- What is "a 40% voltage sag"? Is it more or less severe than a 60% voltage sag of the same duration?
- We'll use a remaining-voltage convention and describe sags, swells, undervoltage, and overvoltage carefully to avoid confusion.

A sag to 40% of nominal voltage.

30 Lecture 3

Describing short-duration disturbances

(Include descriptors from all four columns)

(**************************************				
Duration	phases	Disturbance	Magnitude (for sags and swells)	
InstantaneousMomentaryTemporaryCycles	SingleTwoThree	SagSwellInterruption	PercentagePer-unit	

A momentary single-phase sag to 70% of nominal.

A 4-cycle, three-phase sag to 50% of nominal.

31 Lecture 3

31

Long duration variations and steady-state conditions

32

Lecture 3

Describing long-duration disturbances (Include descriptors from all four columns)

Duration	phases	Disturbance	Magnitude
Minutes and	• Single	Undervoltage	 Percentage
seconds	• Two	 Overvoltage 	 Per-unit
	 Three 	 Interruption 	

A three-minute, single-phase interruption.

A 2-minute, three-phase overvoltage of 1.2 per-unit.

33 Lecture 3

33

Next time...

- Read chapters 1 and 2 in FPQ and PSQ if you haven't
 - Skim both texts to familiarize yourself with them
 - Information around pages 150, 153, and 197 in FPQ may help with HW1
- Investigation planning

Note: FPQ ch. 1 is a good review of distribution systems and apparatus.

34 Lecture 3