

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 4

1

1

Today... Last Power Quality Fundamentals lecture

- Power quality investigations
- Using the scientific method
- Case studies

2

Lecture 4

Notes on submitting assignments

- Preliminary drafts:
 - Send your draft and questions via email easier than Canvas
 - Using Prime? Send a Prime file I can open it and experiment
 - Other formats: PDF, XLSX, DOCX
 - If your draft is worth 100% I'll let you know
- Final draft:
 - Submit Prime file and/or other files in Canvas
 - Your grade and feedback will be in Canvas

3 Lecture 4

3

PQ investigations

• Remember what is needed to create a PQ problem:

- Must have all three "inputs"
- · Eliminate any one input, and the PQ problem is eliminated
- We can try to be proactive and address common disturbances in advance

4 Lecture 4

PQ Investigations: The scientific method

- Observe and describe phenomenon
- Form hypothesis (or two or three!) to explain observations
- Make predictions based on hypotheses
- Test predictions with experiments and more observations
- Refine hypothesis as necessary based on new observations

5 Lecture 4

5

PQ Investigations: Applying the scientific method

- Don't just measure; test: Normal or abnormal?
 - Know what "normal" is before measuring Use calculations, nameplate data, nominal values, historical data, other measurements
 - Abnormal measurements can support or refute a hypothesis and change the course of the investigation
- Other investigation principles:
 - There may be more than one thing to find
 - Beware of assumptions and bias; yours and others'
 - · Replacing devices; new equipment can be faulty
 - Are expectations realistic? i.e. is the equipment really malfunctioning?

6 Lecture 4

University

A real-world example

- Reported problem:
 - Multiple customers on a single distribution feeder reported lights dimming and computers rebooting or switching to UPS.
- More information from discussion with customers:
 - Apparently random
 - Not associated with any activities of the customers

7 Lecture 4

7

A real-world example continued

- · More information from recording
 - Recorded voltage sags when symptoms occurred
 - Two to four per day
 - Not associated with load at monitored location
- Analysis
 - Pre- and Post- sag voltage is different voltage goes up or down about 2 volts on a 120-volt system.

8 Lecture 4

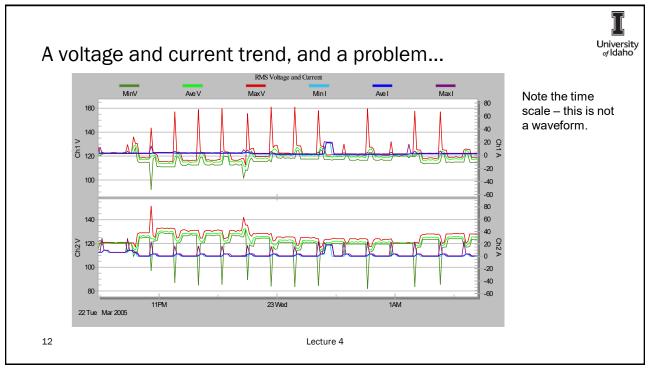
č

A real-world example continued

- Hypotheses
 - A problem at a capacitor, regulator, or the substation transformer is causing the voltage sag
 - Capacitors, voltage regulators, and substation transformer tap changing can cause step changes in service voltage
- Tests
 - Review capacitor control logs: no correlation
 - Feeder has no regulators
 - Manually step the substation transformer: this reproduced the symptoms
- Results
 - Damaged transformer tap switching mechanism was causing an instantaneous open circuit when changing taps

9 Lecture 4

What can we observe and use in our analysis?


- Voltage and current data (spot measurement, trend, waveforms)
- Calculated parameters -harmonics, power, imbalance, etc.

Lecture 4

- Temperature
- Appearance
- Operating characteristics, and response to tests
- Correlation with other events operating logs
- And more!

10

Initial observations and preliminary analysis

- Customer observed problem
 - Initial description is usually incomplete
 - "Our computers are rebooting all the time."
 - "We're having power surges."
 - "The factory had another outage yesterday. That's the third one this year."

13 Lecture 4

13

Initial observations and preliminary analysis

- · Gathering more information
 - Get accurate and complete description of problem
 - When does the problem occur time, frequency?
 - Does problem correlate with known power system events?
 - · What equipment is, and is not, affected?
 - How is the equipment affected?
 - Can the problem be predicted? How?
 - Can they make the problem happen? How?
 - Are neighbors experiencing the same problem?
 - · What solutions have been tried?
 - What is the impact in dollars, time, etc.?

Initial observations and preliminary analysis

Deciding where to start...

Transmission

Substation

Feeder

Service Transformer

Service Conductors

Main Panel

Sub Panel

Branch circuit

Equipment

Data from:
Electric company operating logs
Substation SCADA systems
Recloser controllers
Capacitor controllers

Data from:
Measurements and recordings
Direct observations
Customer logs
Equipment logs

Lecture 4

15

15

Initial observations and preliminary analysis

- Visual observations
 - New or temporary equipment?
 - Recent work?
 - Nameplate data on problem equipment
 - Locations of panels and equipment
 - Response during problem
- If suggested by problem description
 - Inspect wiring and panels
 - Control/Protection settings
 - Temperatures/Connections Infrared?
- Spot measurements of voltage, current, etc.
 - Voltage across connections should be negligible

16 Lecture 4

Observations/Hypotheses - Monitoring

- Advantages of monitoring:
 - Accurate disturbance time-stamps
 - Voltage/current data during disturbances
 - May be used to determine direction
 - Document "normal" conditions
- · Disadvantages:
 - Requires second trip
 - Collects data unrelated to the problem
 - May require extended recording to catch infrequent problems

17 Lecture 4

17

Predictions and Tests - Monitoring

- Keeping a log of events during monitoring is essential
 - Aids in correlating electrical disturbances with equipment malfunctions and may help eliminate some electrical disturbances
- Recorded data often helps form or refine hypotheses and provides data used to test the hypotheses
- Ideally, tests will clearly confirm or eliminate a hypothesis
 - If switching a certain capacitor is causing the problem, then the capacitor operating logs will correlate with the problem logs.

Reducing investigation time

- Review system operating logs for correlation with reported issue
- monitor at the service point if possible
- Install monitors prior to spot measurements
- Use multiple monitors simultaneously
- Monitor for as short a time as necessary
- Photograph or videotape panels, equipment, etc.

19 Lecture 4

19

Accurate conclusions

- Avoid speculation
- Take steps to avoid bias
- Discuss preliminary conclusions with other engineers, technicians, the customer, etc.
- Test preliminary conclusions and recommendations:
 - Use models, etc. to try recommendations on a small scale.
 - Avoid "shotgun" approach make one change at a time.

20 Lecture 4

Communicating results

- Talk with the customer at their level of understanding
- Engineers tend to write, but face-to-face meetings are often more effective.
- · Help the customer follow the process
 - From problem report, to hypotheses, tests, analysis, and conclusions so that the customer can reach the same conclusions on their own.
- Understand and acknowledge the impact of your conclusions on the customer.
- · If you don't know, say so.
- Ask before speculating and make it clear that you are speculating.

21 Lecture 4

21

Example 2: Hot transformer

- Reported problem:
 - High temperature alarms on substation transformer
- More information from discussion with customers:
 - Occurs during peak use times, but load doesn't appear to exceed transformer ratings

Example 2: Hot transformer continued

- Hypothesis 1 (from customer)
 - Harmonic currents are causing excessive heating
- Test the hypothesis record current with PQ analyzer
 - Very minimal current distortion
- New hypothesis
 - Cooling problem

23 Lecture 4

23

Example 2: Hot transformer - conclusion

- Hypotheses 2 confirmed
 - Cooling problem
 - Oil was not circulating through the cooling fins broken oil pump
 - · Also, fans mounted to blow against the prevailing winds
 - Not really a power quality problem, but we didn't know that until we investigated
 - Finding the true problem is often more useful than not finding a power quality problem.

25 Lecture 4

25

Example 3 - motor will not reach operating speed

- Reported problem
 - 30Hp pump motor failed following rebuild of pump
 - Replacement (same horsepower) would draw high current and not accelerate to operating speed before blowing fuses
 - Original transformer bank suspected by customer
 - Larger transformer bank installed
 - New motor still would not reach operating speed
 - PQ engineer called

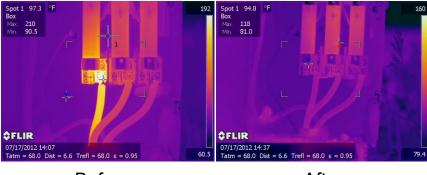
26

Example 3 - Forming and testing hypotheses

- Hypothesis 1 Voltage problem
 - Recorded voltage and current at 1-cycle intervals during attempted start
 - voltage sag was not excessive
 - Starting current continued to rise as if load was larger than 30hp
- Hypothesis 2 pump problem
 - Check specifications on rebuilt pump for lift, pressure, flow-rate and speed based on installation – Pump matched installation
- Hypothesis 3 motor specification/compatibility
 - Check nameplate New motor: 1800RPM, old motor: 1200RPM
 - Horsepower for pump varies with the cube of the speed
 - 30hp at 1200RPM ≈ 101hp at 1800RPM

27 Lecture 4

____ 27



Example 4 - blowing fuses in service disconnect

- Hypothesis 1 -
 - Voltage imbalance causing excessive current imbalance and high current
- Test hypothesis 1:
 - Measured current was normal and balanced
- Hypothesis 2
 - fuse is thermal element Something is causing excessive heat at one fuse
- Test hypothesis 2:
 - Look for other heat sources with infrared camera

Looking for cause of fuse blowing

Before After

Loose connections can result in enough additional heating for fuses to melt.

29 Lecture 4

29

Next time...

- Start Section 2 Voltage sags and short Interruptions
 - Read FPQ chapters 3 and 4
 - Read PSQ chapter 3