

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 5

1

1

University of Idaho

Today...

- Voltage sags, short interruptions, and swells
 - Definitions
 - Causes
 - Fault clearing
 - Fuse/trip-saving
 - Time-current curves
 - Motor starting

2 Lecture 5

Voltage Sags, Interruptions, and Swells

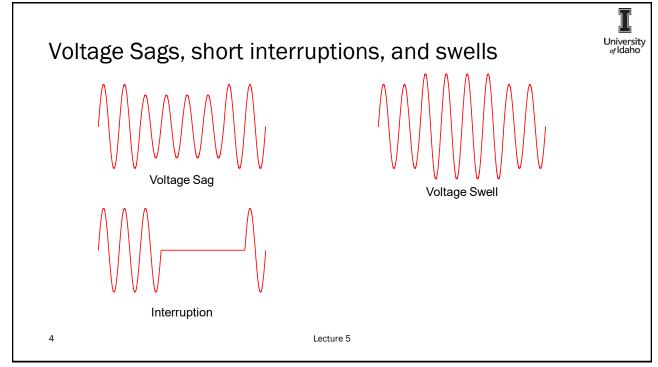
- Definitions: (see table 2.2 in either text)
 - Magnitude (of nominal voltage)

• Sag: 0.1 pu - 0.9 pu

• Interruption: < 0.1 pu

• Swell: >1.1 pu - 1.8 pu

- Duration


Instantaneous: 0.5 cycles - 30 cycles
 Momentary: 30 cycles - 3 seconds
 Temporary: 3 seconds - 1 minute

Note – events >1 minute are "long duration" undervoltage,

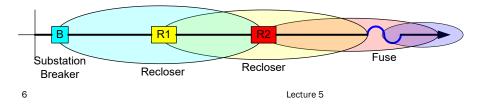
overvoltage, or interruptions

Lecture 5

3

Sources of voltage sags:

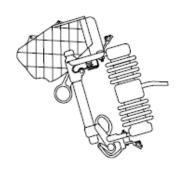
- From first principles:
 - Current through impedance results in a voltage across the impedance.
 - Excessive current results in excessive voltage drop.
 - Sources of sudden, brief, excessive currents:
 - Faults
 - Motor starting


5 Lecture 5

5

System protection overview

- Typical Objectives
 - Distinguish fault current from load current
 - Minimize number of customers off
 - Minimize interruption duration
- Issues:
 - Fault current varies system impedance, fault impedance
 - Coordinating multiple devices can be difficult



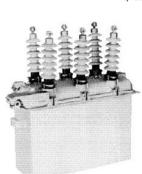
Clearing faults

Fuses

- Inexpensive
- Require manual replacement
- Help locate faults
- In general, fuses are used to disconnect, or "sectionalize" portions of the system with permanent faults from the rest of the system.
- "Current Limiting" fuses can have a PQ benefit.

7

Lecture 5


7

Clearing faults

Reclosers

- Automatic circuit breakers
- Used where faults may be temporary
- Can be programmed to respond differently to different faults.
- Can "test" the downstream system to see if a fault is cleared.
- Generally used to protect larger parts of the system.
- May protect past downstream fuses.

8 Lecture 5

University of Idaho

Clearing faults

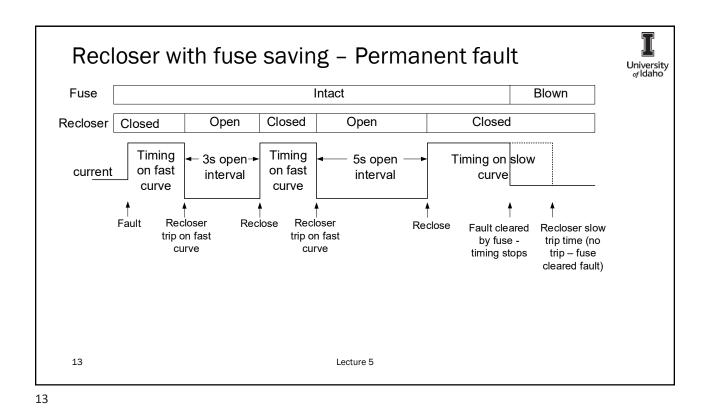
- Reclosers and fuses can work together
 - Fuse saving
 - Recloser trips very quickly to clear a temporary fault before a fuse has time to operate.
 - If the fault is still present when the recloser closes, the recloser trips more slowly to allow a downstream fuse to operate.
 - Example...

9 Lecture 5

9

Clearing faults with and without fuse saving Substation Main Feeder Tuniversity of Idaho Subsection Fuse Fault 3-phase subsection 3-phase subsection Lecture 5

Distribution voltage sag and interruption



- Fault occurs
 - Voltage sags. Fuses, circuit breakers, and reclosers, start to heat up or time-out.
 - Response time is predictable based on Time-Current-Characteristic (TCC) curves.
- · Fault is cleared
 - Fuse, circuit breaker, or recloser opens. Voltage returns to normal (usually) for upstream loads.
 - Voltage swells or overvoltages are possible with significant load shedding while system adjusts
 - Regulators and transformers may change taps or steps. Capacitors may switch off.
 - Voltage drops to zero for downstream loads.
- Circuit breakers/reclosers may reclose

11 Lecture 5

11

Recloser with fuse saving - Temporary fault University of Idaho Fuse Intact Closed Open Closed Open Recloser Closed Timing Timing 3s open-5s open on fast on fast current interval interval curve curve Fault Fault Recloser Reclose Recloser Reclose clears by trip on fast trip on fast itself curve curve 12 Lecture 5

Recloser operation

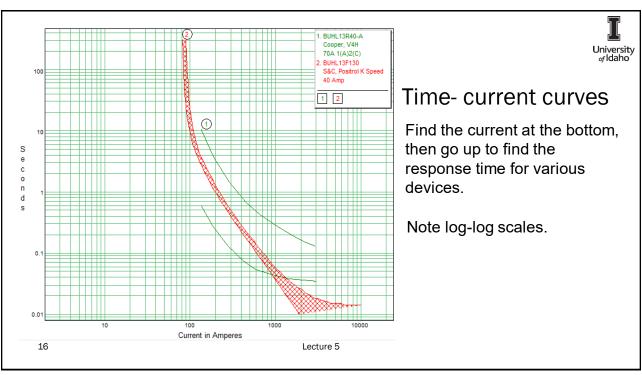
University of Idaho

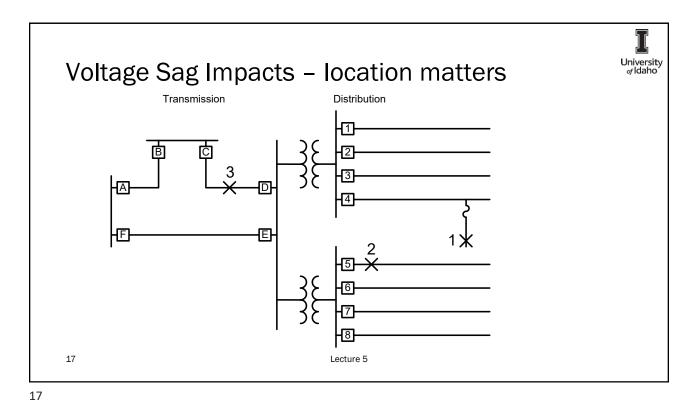
Log of recloser operations during a temporary fault.

Can you tell where the recloser tested to see if the fault was cleared? Was it? What did customers see during the test?

Call Type	Date	Time	Duration
ON	8/24/2006	13:34:34.961	CONTINUING
OFF	8/24/2006	13:34:25.039	09.935
ON	8/24/2006	13:34:24.707	00.316
OFF	8/24/2006	13:34:19.457	05.266
		Lecture 5	

14

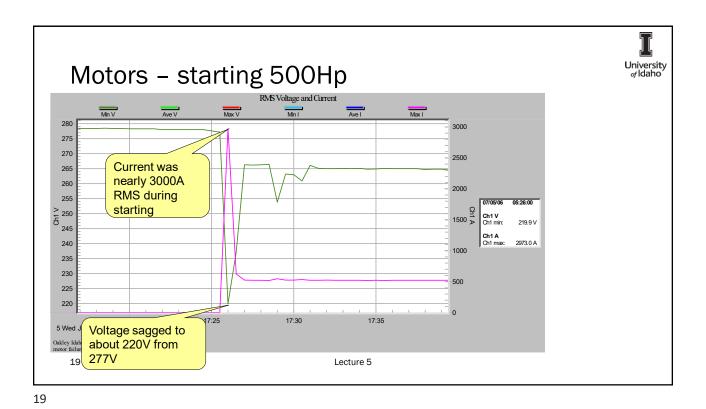



Fuse saving tradeoffs

- What are the advantages of using fuse saving?
- What are the disadvantages?

15 Lecture 5

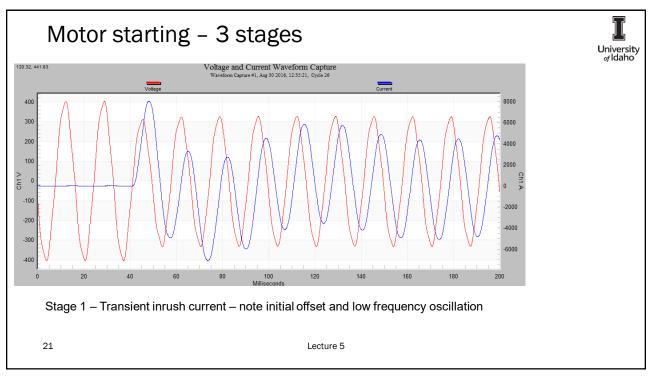
15

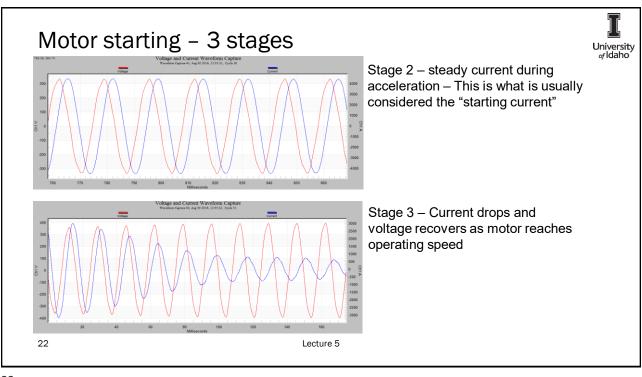


Motor starting

- Motors may start and stop frequently or only occasionally.
- Common cause of voltage sags in industrial facilities the facility's own large motors may cause voltage sags.
- Power systems are typically designed for the peak steadystate load or "demand", not the motor-starting demand.

18 Lecture 5

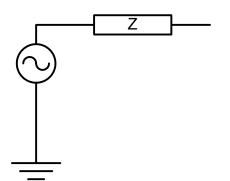

Motor Starting



- "Across the line" or full voltage starting
 - Typically 6 to 8 times normal running current
 - Inexpensive
 - Fast acceleration
 - Results in largest voltage sag or flicker compared to using a "soft starting" system.

See FPQ, pp 113-131 for motor starting examples.

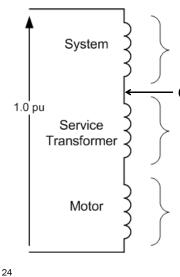
20 Lecture 5



Thevenin equivalents

University of Idaho

 We can reduce the upstream system to a voltage source in series with an impedance, or maybe a few impedances so we can determine the voltages at different locations.


23

Lecture 5

23

Motor starting analysis: voltage division

Xs: determines short-circuit MVA at primary side of service transformer

Other customers are connected here

Xt: with Xs, determines short-circuit MVA at the motor terminals

Xm: with Xs and Xt, determines magnitude of voltage sag when motor starts

Lecture 5

University of Idaho

Reactances and kVA or MVA

- Can solve problem using reactance or the KVAsc or MVAsc values
- Working in per-unit we can convert back and forth between reactances and short-circuit kVA or MVA.

$$\frac{V_{\text{base}}^{2}}{Z_{\text{base}}} = \text{MVA}_{\text{base}} \qquad \frac{(1\text{pu voltage})^{2}}{1\text{pu} \cdot \text{impedance}} = 1\text{pu} \cdot \text{Power}$$

 The system fault capacity in MVA is based on 1pu voltage and 1pu impedance. So the fault capacity is the base MVA of the primary system.

25 Lecture 5

25

Basic calculation example:

Using reactance:

$$Xs := 0.05 pu$$
 $Xt := 0.06 pu$ $Xm := 0.5 pu$

$$Vmin := \frac{Xm}{Xs + Xt + Xm} = 0.82pu$$
 $Vmin = 81.967\%$

Basic voltage division...

26 Lecture 5

Same example using MVA values

See page 117 in FPQ.

- Motor draws 3MVA starting at rated voltage. (See table 4.2 in FPQ)
- System can deliver 30 MVA to a 3-phase fault at transformer primary.
- Transformer is 1.5MVA, 6% impedance.

$$MVA := MW \qquad kVA := kW \qquad pu := 1$$

$$kVAs_{sc} := 30MVA \qquad kVAt_{sc} := \frac{1.5MVA}{0.06} = 25 MVA$$

$$kVAst_{SC} := \frac{1}{\frac{1}{kVAs_{SC}} + \frac{1}{kVAt_{SC}}} = 13.636\,MVA$$
 Fault duty at transformer secondary side.

$$\label{eq:Vmin} {\rm Vmin} := \frac{k{\rm VAst}_{sc}}{k{\rm VAst}_{sc} + k{\rm VA}_{LR}} = 0.82 \qquad \qquad {\rm Vmin} = 81.967\,\%$$

$$\text{Same result...}$$

27 Lecture 5

27

University of Idaho

Converting reactances and fault capacities

First, pick a base MVA – One of the existing ones makes things easier
 I'll use the transformer rating:

$$pu := 1$$
 $kVAt := 1.5MVA$ $kVA_{base} := kVAt$

 System short circuit MVA, and motor starting MVA both imply 1pu impedance on their own bases. We'll convert both to the transformer base:

$$kVAs_{sc} := 30MVA \qquad kVA_{LR} := 500hp \cdot 6 \frac{kVA}{hp} = 3 \, MVA$$

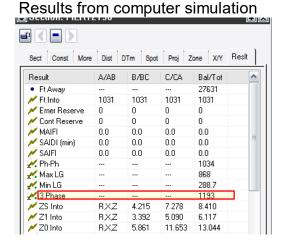
$$\mathrm{Xs} := \frac{\mathrm{kVA}_{base}}{\mathrm{kVAs}_{sc}} = 0.05 \mathrm{pu} \qquad \mathrm{Xt} := 0.06 \, \mathrm{pu} \qquad \mathrm{Xm} := \frac{\mathrm{kVA}_{base}}{\mathrm{kVA}_{LR}} = 0.5 \mathrm{pu}$$

28 Lecture 5

Obtaining motor and transformer data

<u>Transformer:</u>
12.47kV:480V (L-L) Wye-wye
750kVA
X = 5.3%

Motor: 460V (L-L) 3-phase 100HP NEMA Code letter G Full-load Amps: 117


Lecture 5

29

29

Primary system data

Primary System:

12.47 kV (L-L) 3-phase 3-phase Fault duty: 1193A

Note that this software also reports sequence impedances

 $12.47kV \cdot \sqrt{3} \cdot 1193A = 25.767 MVA$

30 Lecture 5

Next time, and things to do:

- Next time: More on voltage sags
 - Motor starting mitigation
 - Equipment impacts rectifier-based loads
- Things to do:
 - Homework 2 You have enough information to complete problems 2, 3, and
 5.
 - Download the paper: Troubleshooting induction motors, by W.R.Finley, IEEE,
 2000. Read section V; "Motor Instantaneously Taken Off Line" for
 information on the impact of the initial DC offset in motor starting current.

31 Lecture 5