

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 13

1

1

- Midterm discussion
- Voltage Transients
 - ITI curve
 - Characterizing voltage transients
 - Collecting data
 - Some sources
 - Some impacts on loads

2 Lecture 13

Analysis of voltage transients

- · Transient analysis usually requires waveform data
- Collecting waveforms requires instruments with faster sampling and more data storage
- More capable power quality recorders often record at high frequency, but discard the data until a transient is detected. Then they retain some amount of pre- and post-event data.
- Oscilloscopes may also be useful for capturing transients

4 Lecture 13

Collecting data:

University of Idaho

5

5

Three ways waveforms help us identify sources of voltage transients

- Waveform characteristics
 - Impulsive or oscillatory
 - Frequency of oscillation
 - Rise time, decay time, etc.
- Time-stamp
 - Correlation with known events
- Time-of-arrival
 - Used to determine transient direction

6 Lecture 13

6

Universit

Characterizing transient overvoltages

See Table 2.2 in either text

- Impulsive
 - Nanosecond
 - 5ns rise, lasts <50ns
 - Microsecond
 - 1µs rise, lasts 50ns 1ms
 - Millisecond
 - 0.1ms rise, lasts >1ms
 - Caused by lightning, removal of an inductive load, loose wiring, and other arcing events

7 Lecture 13

Characterizing transient overvoltages

See Table 2.2 in either text

- Oscillatory (typical frequency, duration, magnitude)
 - Low frequency: <5kHz, 0.3 50ms, 0 4 pu
 - Capacitor switching, ferroresonance, transformer energization
 - Medium frequency: $5-500~\text{kHz},\,20\mu\text{s},\,0$ 8~pu
 - Back-to-back capacitor switching, cable switching, impulse response
 - High frequency: 0.5 5 MHz, 5 μs, 0 4 pu
 - Response of system to an impulsive transient

8 Lecture 13

Characterizing transient overvoltages

- Common Mode (N-G)
 - caused by lightning, utility switching, ground potential differences in a network, and radio and T.V. transmitters
- Normal Mode
 - caused by power electronics, switching power supplies, and arcing loads

9

Q

Time-of-arrival test

- Used to determine a transient's direction of travel.
- Transients travel away from their source, at (nearly) the speed of light.
- We can monitor two locations and determine the direction to a transient source.

10 Lecture 13

Impact on loads

• A few "symptoms"

- Hard disk crash
- Power supply failure
- Component failure
- SCR failure
- Circuit board failures
- Process interruptions
- "letting the smoke out"

Lecture 13

17

How transients travel through and between electrical systems

- Transients may travel via:
 - Conduction ("Resistive coupling")
 - Inductive coupling
 - Capacitive coupling
 - Far-field coupling

18 Lecture 13

University of Idaho

How transients travel...

- Conduction Using any and all conductor paths available
 - Power circuits
 - Communication circuits
 - Grounding systems Water pipes structural steel

19 Lecture 13

19

How transients travel: Capacitive coupling

- Produced by the electric field between conductors (voltage)
- Acts as a current injection point
- Directly proportional to:
 - Frequency
 - Voltage
 - Conductor length
- Inversely proportional to:
 - Conductor separation

21

Capacitance

Lecture 13

Capacitive and Inductive coupling issues

- Voltages and currents can be capacitively and inductively coupled in any conductor
 - Fencing
 - Piping
 - Building materials
- A transient can couple from circuit 1 to circuit 2, and then from circuit 2 to circuit 3.
- Can you see why we twist conductors in communication circuits?

22

Lecture 13

Far field coupling

- Circuit components may act like a receiving antenna for radiated electromagnetic energy
 - Far field starts beyond $\lambda/2\pi$ (approximately wavelength/6)
 - With increasing distance, electric and magnetic fields each start to produce their complementary field
 - Capacitive and inductive coupling are no longer separate effects in the far field
 - Absorption of EM radiation in the far field has no impact on the transmitter
 - Examples: Radio and television, Lightning
 - One of the symptoms of arcing connections is radio interference, and we can look for arcing connections with radio receivers

23 Lecture 13

23

Next time

- More on Transients
- Principles of protection

24 Lecture 13