

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 17

1

1

Today...

- Long term voltage variations see PSQ 7.1-7.5 and FPQ 5.4-5.5
- Example resolving a local (service) voltage regulation problem
- Customer-side mitigation of long-duration voltage variations
- Utility-side mitigation of long-duration voltage variations
 - Voltage regulator operation
 - Capacitors

2

Lecture 17

Investigating voltage regulation problems

- System or Service?
 - System problem
 - Service voltage is not significantly affected by load variations at the service point
 - Voltage is low (or high) with little or no load at the service point
 - Service problem
 - Voltage is significantly affected by load fluctuations at the service point
 - Voltage is normal with little or no load at the service point

3 Lecture 17

3

Resolving a local voltage-regulation problem

- Example:
 - Single phase, 120/240V customer reports lights flicker and UPS sometimes "beeps" when some motor loads start. (well pump, AC)
 - Voltage measured at service panel is 122, 122, 244V with almost no load.
 - When well pump starts, current peaks at 160A RMS, and voltage drops to 112.5, 112.5, 225V.
 - Customer is served with a 15kVA transformer and 100' of #2 triplex aluminum cable.
 - Given this data, calculate percent voltage regulation.

$$Percent_Regulation = \frac{V_{NL} - V_{FL}}{V_{FL}} \cdot 100$$

4 Lecture 17

Resolving a local voltage-regulation problem

• Voltage drop for transformers, assuming 2% impedance:

Tables or graphs can simplify the process of estimating voltage drop. This is an example used for transformers.

5

5

Resolving a local voltage-regulation problem

• Service cable voltage drop, per 100' of service length:

This graph is used to simplify estimating voltage drop in service cables.

Resolving a local voltage-regulation problem

- From graphs, voltage drop for 160A is ~7.8%, 5% for the transformer and ~2.8% for the conductor. This corresponds to voltage regulation of 8.46%.
- Design goal: <4% (voltage regulation: <4.17%)
- We can change the conductor, the transformer, or both.
- Suggestions?

7 Lecture 17

7

Customer-side mitigation

- Ferroresonant transformers
 - What do we know about them?
 - Very constant output voltage over a wide range of input voltage
 - Must be oversized
 - Best for relatively constant load not suitable for motors
 - Inefficient best for relatively small loads

8 Lecture 17

Customer-side mitigation

- Magnetic Synthesizers (PSQ pg. 71)
 - Similar to ferroresonant transformer
 - Specifically designed for three-phase loads
 - Provides two-way harmonic isolation
 - Load harmonics blocked from reaching source
 - Voltage distortion in source doesn't reach the load
 - Uses saturated reactors, transformers, and capacitors
 - Output voltage is relatively constant (+/-4%) over a wide range of input voltage (+/- 40%)

9 Lecture 17

9

Customer-side mitigation

- Electronic tap-changing transformers or regulators
 - Use solid-state switches to quickly switch between taps
 - Can provide voltage in a narrower range than supplied by the utility
 - One example:
 - Input: +10% to -20% of nominal
 - Output: +/- 2.5% of nominal

10 Lecture 17

University of Idaho

Customer-side mitigation

- UPSs
 - Normally not intended for long-term mitigation
 - Some models incorporate ferroresonant transformers or electronic tapchanging voltage regulators or transformers
 - Provides voltage regulation over a wider range of input without switching to battery

11 Lecture 17

11

Correct

PSQ Book corrections Ch. 7

• Page 342, section 7.5.6: Calculating capacitance to correct displacement power factor

$$kvar = kW(tan(\theta_{orig}) - tan(\theta_{new}))$$

$$kW = \frac{1}{PF_{orig}} - 1$$

$$PF_{new}$$
wrong

Second equation should be:

12 Lecture 17

Utility mitigation of long-duration voltage variations Voltage regulator

• Automatically boosts or bucks the voltage

- Typical range is +/-10% in 32 steps
- 20%/32 = 5/8% per step
- Usually single-phase devices, controlled independently

Picture from "How Step-Voltage Regulators Operate" Cooper Power Systems

Lecture 17

13

13

Understanding regulator operation

• A 10:1 transformer

Connected to Boost

14 Lecture 17

15

Voltage regulator control

- Control settings include
 - Voltage level the target voltage
 - Bandwidth the difference between the upper and lower acceptable voltage, around the voltage setting
 - Time delay how long the voltage must be "out of band" before the regulator control initiates a tap change

16 Lecture 17

Voltage regulator control example

Bandwidth and time delay settings help prevent "hunting" – frequent stepping up and down.

17

Lecture 17

17

Line-drop compensation

- Provides load-dependent voltage regulation
 - Regulator uses measured V and I to determine voltage drop to a downstream point
 - Regulator control adjusts tap setting to maintain set voltage at the downstream point
- Line is simulated in the regulator controller with two settings:
 - R proportional to the resistance of the line
 - X proportional to the inductive reactance of the line

The units for R and X settings are volts.

18 Lecture 17

Regulators in series

- May occur on long feeders
- Problems arise with load rejection

21 Lecture 17

21

Capacitors

- May be installed in shunt or series
 - Shunt most common on distribution
 - Shunt and series used in transmission
- Shunt capacitors produce a voltage rise that is nearly independent of load
- Series capacitors produce a voltage rise that is proportional to load current
- Shunt capacitors reduce losses by reducing reactive power flow through the system – reactive power is provided near load centers
- · Series capacitors help compensate for the line reactance
- The series RLC circuit formed by the line and the capacitor allows current to flow
- Current flow results in out-of-phase voltage drops across the line inductance and shunt capacitance

22 Lecture 17

Utility capacitor control

- Capacitors may be controlled based on:
 - Power factor
 - Voltage
 - Time
 - All three
- Voltage "override" is common
 - Capacitors are controlled to provide reactive power, with minimum and maximum voltage settings

26 Lecture 17

University of Idaho

Real world regulator and capacitor control

- Old system
 - Capacitors radio controlled from the substation
 - Substation measures reactive power need by feeder and substation total
 - Switches on capacitors when need exceeds size of next capacitor in the list
 - Capacitors use voltage override to help prevent under- or over-voltages
 - Regulators operate independently, using voltage and current input
 - Only R setting is used X has little effect at high power factors
 - R may be adjusted in the field to increase or reduce voltage based on voltage recordings

27 Lecture 17

27

Real world regulator and capacitor control

- New system
 - Integrated Volt/Var Control (IVVC)
 - · Regulators and capacitors controlled together by computer algorithm
 - Minimizes VAR flow across the system (reduces losses)
 - Optimizes voltage using both capacitors and regulators
 - Incorporates data from voltage and current transducers at regulators, capacitors, and elsewhere

28 Lecture 17

Next time...

• More on capacitor applications

29 Lecture 17