

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 18

1

1

University of Idaho

Today...

- Capacitors
 - Utility and end-user capacitor applications
 - Overview
 - Capacitor sizing
 - Current reduction
 - Loss reduction
 - Location discussion
 - Power factor charges
 - Voltage rise

2

Lecture 18

University of Idaho

Capacitors - overview

- A local reactive power source, that can improve power factor and in turn...
 - Reduce real power losses
 - Release transformer and conductor capacity
 - Reduce power factor charges
 - Boost voltage

2

Lecture 18

3

University

Power factor:

Displacement, True, and Distortion (review from lecture 9)

- Displacement power factor:
- $DPF = \cos \theta$
- Due to <u>phase shift</u> between V and I <u>at fundamental frequency</u>
- True Power Factor:

 $PF = \frac{P}{S} = \frac{Active_power}{Apparent_power}$

- includes harmonics
- True Power Factor may also be called "Power Factor" or "Total Power Factor"

4

University

Power factor:

Displacement, True, and Distortion (review from lecture 9)

• Distortion PF: Relates RMS of the distorted current, including the fundamental current, to RMS of the fundamental current only

$$PF_{dist} = \frac{1}{\sqrt{1 + THD_{I}^{2}}}$$

· How displacement, distortion, and true power factor are related

$$TruePF = DPF \times PF_{dist}$$

Adding capacitors only corrects Displacement Power Factor (DPF). This
equation shows that the best True Power Factor we can achieve by adding
capacitors is limited by the distortion power factor.

5 Lecture 18

5

Sizing capacitor banks

• To correct Displacement PF, analyze the power triangle (Review from Lecture 2)

 $cos(\theta) = DPF$

$$P = S \cdot \cos(\theta)$$

$$Q = P \cdot tan(\theta)$$

$$S = \sqrt{P^2 + Q^2}$$

$$S = \frac{P}{PF}$$
 $PF = \frac{P}{S}$

Reminder – the "Power Factor Teaching Tool" Excel spreadsheet is on the class website.

6 Lecture 18

Sizing capacitor banks

• Text equations: (PSQ pg. 342 has an error, see lecture 17)

$$kVAR = kW \cdot \left(\sqrt{\frac{1}{DPF_{orig}^{2}} - 1} - \sqrt{\frac{1}{DPF_{new}^{2}} - 1} \right)$$

$$kVAR = kW \cdot \left(tan\left(\theta_{orig}\right) - tan\left(\theta_{new}\right)\right)$$

For an 80kW load with an initial DPF of 80%, how much reactive power (kVAR) is required to raise the DPF to 90%?

21.26kVAR is needed to correct the power factor to 90%.

These equations can be used if we know the real power, the existing power factor, and our target power factor.

7

Lecture 18

7

Sizing capacitor banks

• Some other useful equations

$$Q_{old} = P \cdot tan(acos(DPF_{old}))$$

$$Q_{old} - Q_{cap} = Q_{new}$$

$$DPF_{new} = cos \left(atan \left(\frac{Q_{new}}{P} \right) \right)$$

These equations can be used to find the reactive power for a given power factor and the new power factor when a capacitor is installed.

8

Line current reduction

Line current reduction is approximately*:

$$\% \Delta I = 100 \left[1 - \left(\frac{\cos \theta_{before}}{\cos \theta_{after}} \right) \right] \qquad \% \Delta I = 100 \left[1 - \left(\frac{DPF_{original}}{DPF_{corrected}} \right) \right]$$

Apparent power can also be used to calculate current:

$$I = \frac{S_{3_phase}}{V_{LL} \cdot \sqrt{3}}$$
 A *change* in S can be used to calculate a change in current.

*assumes voltage at the load doesn't change.

9

Lecture 18

Loss reduction

• The reduction in system losses is approximately:

$$\% loss_{reduction} = 100 \left[1 - \left(\frac{DPF_{original}}{DPF_{corrected}} \right)^{2} \right]$$

• The portion of the original losses remaining after power factor correction is approximately:

% power loss
$$\propto 100 \left(\frac{DPF_{original}}{DPF_{corrected}} \right)^2$$

10

Voltage improvement – Primary system (FPQ pg 148)

$$\Delta V = \frac{Q \text{cap} \cdot 3\phi}{M \text{VAsc} \cdot 3\phi} = \frac{X \text{s}}{X \text{c}}$$
 Q is in MVAr or kVAr

$$\frac{kV_{LL}^{2}}{X_{s}(\Omega)} = MVA_{sc_{3}\phi}$$
 (in MVA)

Given a capacitor bank size in kVAr and the system short circuit MVA or the system voltage and upstream impedance in ohms at the capacitor's location, we can calculate the per-unit or percent voltage rise.

11 Lecture 18

11

Example calculation: Voltage improvement - Primary system

- Example system:
 - 1,200kVAr capacitor (400kVAr/phase)
 - 12.47kV L-L distribution line
 - Short circuit duty: 20MVA assume entirely inductive

Calculated voltage rise:

$$\Delta V \coloneqq \frac{Q cap_3\phi}{MVAsc_3\phi} \qquad \frac{1.2 \ MVAR}{20 \cdot MVA} = 0.06 \quad \Delta V = 6\%$$

12 Lecture 18

Voltage improvement – Secondary system (PSQ pg. 339)

Voltage rise is approximately:

$$\%\Delta V = \frac{kvar_{cap}x Z_{tx}(\%)}{kVA_{tx}}$$

- Assumes system impedance is dominated by the service transformer
 - Example:

Capacitor: 300kvar

Transformer: 1000kVA, 6% impedance

Voltage rise (%)?

13 Lecture 18

13

Switching transient frequency (FPQ pg. 153)

 The frequency of the oscillatory switching transient is given by the resonant frequency calculation for an L-C circuit, using the system's inductance and the capacitor's capacitance.

$$f_{transient} := \frac{1}{2 \cdot \pi \cdot \sqrt{Ls \cdot C}}$$

14 Lecture 18

Example calculation: Switching transient frequency

(Example system from slide 12)

Step 1 - Find capacitor size in Farads

$$C := \frac{Q \operatorname{cap}_{3} \phi}{2 \cdot \pi \cdot f \cdot V_{LL}^{2}} \qquad \frac{1200 \ kVAR}{2 \cdot \pi \cdot 60 \ Hz \cdot (12.47 \ kV)^{2}} = 20.47 \ \mu F$$

The reactance will be useful too:

$$X_c \coloneqq \frac{1}{2 \cdot \pi \cdot f \cdot C} \qquad X_c = 129.584 \ \Omega$$

Note: you will get the same value for C if you use single-phase Q and V values; see FPQ equation 5.7.

15

Lecture 18

15

Example calculation: Switching transient frequency

(Example system from slide 12)

Step 2 - Find system inductance Ls

$$X_s := \frac{V_{LL}^2}{MVAsc_3\phi} \qquad \frac{(12.47 \ kV)^2}{20 \ MVA} = 7.775 \ \Omega$$

$$Ls := \frac{X_s}{2 \cdot \pi \cdot f} \qquad \frac{7.775 \ \Omega}{2 \ \pi \cdot 60 \ Hz} = 20.624 \ mH$$

16

Pause to check our work:

 With Xs and Xc we can calculate the voltage rise again to check our work (see equation on slide 11).

$$\Delta V check = \frac{X_s}{X_c}$$

$$\Delta V check = 6\%$$

 This agrees with the earlier result, so C and Ls values should be correct.

17 Lecture 18

17

Example calculation: Switching transient frequency

(Example system from slide 12)

Step 3 – Use capacitance and inductance to calculate resonant frequency:

$$f_{transient} := \frac{1}{2 \cdot \pi \cdot \sqrt{Ls \cdot C}} \quad \frac{1}{2 \pi \sqrt{Ls \cdot C}} = 244.949 \text{ Hz}$$

18 Lecture 18

Inrush current amplitude (FPQ pg. 153)

- We will use Ohm's law to calculate the peak inrush current with the capacitor bank switches on:
- System surge impedance: $Z_o := \sqrt{\frac{Ls}{C}}$
- Ohm's Law: $Ipk = \frac{Vm}{Z_o}$ Vm is the peak (not RMS) line-to-neutral voltage, and this will give us the peak line current.

19

Lecture 18

19

Example calculation: Inrush current magnitude

(Example system from slide 12)

$$Z_o := \sqrt{\frac{Ls}{C}}$$
 $\sqrt{\frac{20.624 \ mH}{20.47 \ \mu F}} = 31.742 \ \Omega$

$$Ipk = \frac{Vm}{Z_o} \qquad Ipk := \frac{\sqrt{2 \cdot 12.47 \cdot kV}}{\sqrt{3}} = 320.77 \text{ A}$$

20

Capacitor size based on voltage rise

 Voltage rise is determined from capacitor size and system short circuit duty (see slide 11), so:

$$Max_MVAR = \Delta V_limit_pu \cdot MVAsc_3\phi$$

The maximum 3-phase MVAR of the capacitor bank is the per-unit voltage rise x the 3-phase short circuit MVA.

21 Lecture 18

21

Example calculation: limit the voltage rise to 2.5%

(Example system from slide 12)

$$Max_MVAR = \Delta V_limit_pu \cdot MVAsc_3\phi$$

$$Max_MVAR = 0.025 \cdot 20 \ MVA = 0.5 \ MVAR$$

This is the maximum 3-phase capacitor bank size. We then must select available capacitors to assemble the capacitor bank. For example, 150kVAr/phase using 3 x 50kVAr/phase for a 450kVAr capacitor bank.

22 Lecture 18

Why install capacitors

- Release conductor and transformer capacity
 - Reducing current in conductors and transformers makes additional capacity available in those conductors and transformers
- Reduce real-power losses
 - Reducing reactive power flow through conductors and transformers reduces real power losses (I²R losses) in conductors and transformers

23 Lecture 18

23

Capacitor location considerations

- Capacitors do NOT change the power factor of the original load
- They are a local source of reactive power for inductive loads
- This distinction is important and can be used as a guide when deciding where to install capacitors
- It is the load + capacitor combination that has a better power factor than the load alone

Capacitor location considerations

- Current and the associated losses are only reduced upstream of the capacitor
- Installing a capacitor near, but downstream of the service meter reduces power factor charges if there are any, but does not address losses inside the facility

25 Lecture 18

25

Capacitor location considerations

- Ideally, capacitors should be placed as close as possible to the location where reactive power is needed
 - May be switched with specific motors*
- Trade-offs
 - Multiple small capacitors may be more expensive than one larger one
 - It may be easier to control harmonics in one location
 - *Beware of self-excitation risk

26 Lecture 18

Capacitor location considerations - Self-excitation

- If a motor with terminal-connected capacitors is isolated, the capacitors can provide a path for reactive power flow back and forth between the motor and capacitor.
- Voltage at motor terminals can increase to damaging levels.
- If motor and capacitor are reconnected to system, phase shift may be large, resulting in transients in voltage, current, and torque.
- To reduce likelihood of self-excitation:
 - Limit capacitor bank to 20 to 30% of motor kVA [1]
 - Limit capacitor bank to motor's magnetizing kVA[1,2]

$$Q_c \leq 0.9 \cdot I_{no\ load} \cdot V_{LL} \cdot \sqrt{3}$$
 [2]

27 Lecture 18

27

Capacitors and power factor charges

Power factor charges

A popular method of charging for poor power factor is to adjust the customer's demand charge based on the difference between a target DPF and the customer's actual DPF when the customer's DPF is below the target

Examples: (Both increase the billing demand for DPF<90%)

$$AdjustedDemand = Demand((0.90 - DPF) + 1)$$

$$AdjustedDemand = Demand \left(\frac{0.90}{DPF} \right)$$

Note: Adjustment is only applied if DPF is below the target.

28 Lecture 18

More on capacitor size and location

- It's important to understand the applicable rate schedule before installing capacitors
 - You cannot save money that you are not spending to begin with
- A large capacitor bank may cause large voltage changes when switched on or off

29 Lecture 18

29

University

Next time...

- Flicker
- More examples

References for self excitation:

[1] EPRI Power Plant Electrical Reference Series, Volume 6 - "Motors"

[2] Wiki-Electrical Installation Guide, "Power Factor Correction of Induction Motors" https://www.electrical-installation.org/enwiki/Power_factor_correction_of_induction_motors

30 Lecture 18