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Today…

• Capacitors

– Utility and end-user capacitor applications

•Overview

•Capacitor sizing

•Current reduction

•Loss reduction

•Location discussion

•Power factor charges

•Voltage rise
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Capacitors - overview

• A local reactive power source, that can improve power factor 

and in turn…

– Reduce real power losses

– Release transformer and conductor capacity

– Reduce power factor charges

– Boost voltage 
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Power factor: 

Displacement, True, and Distortion (review from lecture 9)

• Displacement power factor:

– Due to phase shift between V 
and I at fundamental frequency

• True Power Factor:

– includes harmonics

• True Power Factor may also be 
called “Power Factor” or “Total 
Power Factor”
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Power factor: 

Displacement, True, and Distortion (review from lecture 9)

• Distortion PF:  Relates RMS of the distorted current, including the fundamental 

current, to RMS of the fundamental current only

• How displacement, distortion, and true power factor are related

• Adding capacitors only corrects Displacement Power Factor (DPF).  This 

equation shows that the best True Power Factor we can achieve by adding 

capacitors is limited by the distortion power factor.
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Sizing capacitor banks

• To correct Displacement PF, analyze the power triangle

(Review from Lecture 2)
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Reminder – the “Power Factor Teaching Tool” Excel spreadsheet is on 

the class website.
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Sizing capacitor banks

• Text equations: (PSQ pg. 342 has an error, see lecture 17)
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These equations can be used if we know the real power, the 

existing power factor, and our target power factor.

Try it:

For an 80kW load with an initial 

DPF of 80%, how much reactive 

power (kVAR) is required to raise 

the DPF to 90%?

21.26kVAR is needed to correct 

the power factor to 90%.  

8

Sizing capacitor banks

• Some other useful equations
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These equations can be used to 

find the reactive power for a 

given power factor and the new 

power factor when a capacitor is 

installed.
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Line current reduction

• Line current reduction is approximately*:

Apparent power can also be used to calculate current:

*assumes voltage at the load doesn’t change.
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A change in S can be 

used to calculate a 

change in current.

Loss reduction

• The reduction in system losses is approximately:

• The portion of the original losses remaining after power factor 

correction is approximately:
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Voltage improvement – Primary system (FPQ pg 148)
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Given a capacitor bank size in kVAr and the system short circuit 

MVA or the system voltage and upstream impedance in ohms at 

the capacitor’s location, we can calculate the per-unit or percent 

voltage rise.
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Example calculation: Voltage improvement - Primary system

• Example system:

– 1,200kVAr capacitor (400kVAr/phase)

– 12.47kV L-L distribution line

– Short circuit duty: 20MVA – assume entirely inductive

Calculated voltage rise:   
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Voltage improvement – Secondary system (PSQ  pg. 339)

• Voltage rise is approximately:

– Assumes system impedance is dominated by the service transformer

•Example:

Capacitor: 300kvar

Transformer:  1000kVA, 6% impedance

Voltage rise (%)?
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Switching transient frequency (FPQ pg. 153)

• The frequency of the oscillatory switching transient is given 

by the resonant frequency calculation for an L-C circuit, 

using the system’s inductance and the capacitor’s 

capacitance.
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Example calculation: Switching transient frequency

(Example system from slide 12)

Step 1 – Find capacitor size in Farads
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Note: you will get the same value for C if you use single-phase 

Q and V values; see FPQ equation 5.7.

The reactance will be useful too:
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Example calculation: Switching transient frequency

(Example system from slide 12)

Step 2 – Find system inductance Ls
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Pause to check our work:

• With Xs and Xc we can calculate the voltage rise again to 

check our work (see equation on slide 11).

• This agrees with the earlier result, so C and Ls values should 

be correct.
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Example calculation: Switching transient frequency

(Example system from slide 12)

Step 3 – Use capacitance and inductance to calculate resonant 

frequency:
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Inrush current amplitude (FPQ pg. 153)

• We will use Ohm’s law to calculate the peak inrush current 

with the capacitor bank switches on:

• System surge impedance:

• Ohm’s Law:  
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Vm is the peak (not RMS) line-

to-neutral voltage, and this will 

give us the peak line current.
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Example calculation: Inrush current magnitude

(Example system from slide 12)
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Capacitor size based on voltage rise

• Voltage rise is determined from capacitor size and system 

short circuit duty (see slide 11), so:
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The maximum 3-phase MVAR of the capacitor bank is 

the per-unit voltage rise x the 3-phase short circuit MVA.
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Example calculation: limit the voltage rise to 2.5%

(Example system from slide 12)

This is the maximum 3-phase capacitor bank size.  We 

then must select available capacitors to assemble the 

capacitor bank.  For example, 150kVAr/phase using 3 x 

50kVAr/phase for a 450kVAr capacitor bank.
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Why install capacitors

• Release conductor and transformer capacity

– Reducing current in conductors and transformers makes additional capacity 

available in those conductors and transformers

• Reduce real-power losses

– Reducing reactive power flow through conductors and transformers reduces 

real power losses (I2R losses) in conductors and transformers

Lecture 18
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Capacitor location considerations

• Capacitors do NOT change the power factor of the original load

• They are a local source of reactive power for inductive loads

• This distinction is important and can be used as a guide when 

deciding where to install capacitors

• It is the load + capacitor combination that has a better power 

factor than the load alone
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Capacitor location considerations

• Current and the associated losses are only reduced 

upstream of the capacitor

• Installing a capacitor near, but downstream of the service 

meter reduces power factor charges if there are any, but 

does not address losses inside the facility
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Capacitor location considerations

• Ideally, capacitors should be placed as close as possible to the 

location where reactive power is needed

– May be switched with specific motors*

• Trade-offs

– Multiple small capacitors may be more expensive than one larger one

– It may be easier to control harmonics in one location

*Beware of self-excitation risk
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Capacitor location considerations - Self-excitation

• If a motor with terminal-connected capacitors is isolated, the capacitors can 

provide a path for reactive power flow back and forth between the motor and 

capacitor.

• Voltage at motor terminals can increase to damaging levels.

• If motor and capacitor are reconnected to system, phase shift may be large, 

resulting in transients in voltage, current, and torque.

• To reduce likelihood of self-excitation:

– Limit capacitor bank to 20 to 30% of motor kVA [1]

– Limit capacitor bank to motor’s magnetizing kVA[1,2]

[2]
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Capacitors and power factor charges

• Power factor charges

A popular method of charging for poor power factor is to adjust the customer’s 

demand charge based on the difference between a target DPF and the 

customer’s actual DPF when the customer’s DPF is below the target

Examples: (Both increase the billing demand for DPF<90%)
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Note:  Adjustment is only applied if DPF is below the target.
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More on capacitor size and location

• It’s important to understand the applicable rate schedule 

before installing capacitors

– You cannot save money that you are not spending to begin with

• A large capacitor bank may cause large voltage changes 

when switched on or off
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Next time…

• Flicker

• More examples

References for self excitation:

[1] EPRI Power Plant Electrical Reference Series, Volume 6 – “Motors”

[2] Wiki-Electrical Installation Guide, “Power Factor Correction of Induction Motors”

https://www.electrical-installation.org/enwiki/Power_factor_correction_of_induction_motors
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