

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 19

1

1

Today...

• Flicker

- Power quality and reliability benchmarking
 - Definitions
 - Motivation
 - Issues

2

Lecture 19

Flicker - definitions

- IEEE-100 definitions:
 - "A perceptible change in electric light source intensity due to a fluctuation of input voltage."
 - "A variation of input voltage sufficient in duration to allow visual observation of a change in electric light source intensity."
- In summary
 - "Flicker" refers to both: 1) a perceptible change in electric light intensity, and 2) the voltage variation responsible for that change in electric light intensity

3 Lecture 19

3

Some useful flicker references

- IEEE-519-1992
- IEEE-141-1993
- IEEE-1453-2011/IEC 61000-4-15:2010 (Flickermeter)
- IEEE-1453-2022: (IEEE Standard for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems)
- Flicker Interaction Studies and Flickermeter Improvement, Rong Cai, PHd. Thesis -2009

http://alexandria.tue.nl/extra2/200911297.pdf

- Interesting reading...

Lecture 19

Flicker - new challenges

- Goal predict human perception of changes in luminance AND light spectrum resulting from measured voltage variations
- Voltage variations may include:
 - RMS Dips
 - Interharmonics
 - Amplitude modulation (see PSQ fig. 7.15)
 - Notches
- Challenges:
 - Different lighting technologies respond differently
 - Seemingly identical lighting technologies may respond differently
 - Lighting changes may occur without voltage variations

5 Lecture 19

5

University

The evolution of flicker

Voltage Disturbance	+ Path	+	Vulnerable Equipment	=	PQ Problem
Voltage dip	Transformers/ wiring		Incandescent Lamp		Flicker (voltmeter)
Voltage dips (variable)	Transformers/ wiring		Incandescent Lamp		Flicker (Flickermeter)
Voltage dips Transformers/ Notches wiring Harmonics + Ballast/Driver) Ballast/Driver			Ballast/Driver Flourescent and LED lamps		Flicker?

6 Lecture 19

Flicker

- Ch 7 (PSQ) discusses "traditional" flicker
 - Thresholds of objection and perception based on the frequency and the magnitude of the voltage variations (see figure 7.14)
 - Traditional curves are convenient for simple checks of one or two devices
 - Combined effect of multiple magnitudes and frequencies is not reflected in traditional curves

7 Lecture 19

7

University of Idaho GE flicker curve from IEEE 1453-2015 6 5 PERCENT VOLTAGE DIP BORDERLINE OF IRRITATION BORDERLINE OF VISIBILITY OF FLICKER 10 20 30 5 10 DIPS PER HOUR DIPS PER MINUTE DIPS PER SECOND FREQUENCY OF DIPS Lecture 19

University of Idaho

Continuous, cyclic, or intermittent

- Continuous or cyclic
 - Results in voltage modulation or higher frequency voltage fluctuations
- Intermittent
 - Occasional voltage variations caused by faults, or motor-starts
 - Low to very low frequencies

9 Lecture 19

9

Traditional flicker calculations

Modulation

$$Percent\ voltage\ modulation = \frac{Vmax - Vmin}{Vo}\ x100\%$$

Flicker

$$Percent \ voltage \ flicker = \frac{Vpre - Vmin}{Vpre} x 100\%$$

Vo = average voltage

10 Lecture 19

Investigating traditional flicker

- Measure "pre" and minimum RMS voltage, and record or estimate frequency
- Some PQ recorders approximate threshold curves

11

Lecture 19

11

Complex voltage variations and flickermeters IEEE Std. 1453

- Employs a special "flickermeter" (IEC 61000-4-15:2010)
- Threshold of irritation is still quite similar to IEEE-519-1992 or IEEE-141-1993 thresholds
- · Advantages:
 - Includes the effect of multiple frequencies/magnitudes
 - Simplifies pass-fail testing provided the measuring or analysis tools are available
- Disadvantages:
 - Pass/fail assessment may correspond to lamp behavior

12

13

13

IEEE 1453 Flicker evaluation

- · Standard specifies a flickermeter
 - Processes voltage measurements to simulate their effect on incandescent bulbs, and the response of the human eye to those effects
 - Includes response to multiple flicker events of different magnitudes and frequencies
 - See pg. 517 in PSQ for a block diagram

From: Linearity of the IEC Flickermeter Regarding Amplitude Variations of Rectangular Fluctuations J. J. Gutierrez, Member, IEEE, J. Ruiz, Member, IEEE, and S. Ruiz de Gauna

14 Lecture 19

The IEEE 1453 flicker values

- Flickermeter produces two important values:
 - Pst: The short-term flicker calculated over a 10-minute interval. Value is normalized so that Pst > 1 indicates irritating flicker, for a 60-watt incandescent lamp.

$$P_{st} = \sqrt{0.0314P_{0.1} + 0.0525P_{1s} + 0.0657P_{3s} + 0.28P_{10s} + 0.08P_{50s}}$$

- $P_{0.1}$, P_{1s} , P_{3s} , P_{10s} , and P_{50s} are the flicker levels exceeded 0.1%, 1.0%, 3.0%, 10.0%, and 50.0% of the time, respectively.
- Plt: The long-term flicker, used for devices with duty cycles longer than 10 minutes.

$$P_{LT} = \sqrt[3]{\frac{\displaystyle\sum_{i=1}^{N} P_{S} t_i^3}{N}}$$
 IEEE 1453 uses N=12

15 Lecture 19

15

Statistical compliance evaluations

- Compliance is based on statistical analysis of samples over a short period of time
 - IEC and IEEE compliance: 95% probability that Pst and Plt will be in the acceptable range
 - IEEE planning level: IEEE uses a 99% probability for planning purposes in flicker compliance evaluations.
 - When planning for new loads at the MV, HV, or EHV level, the expected flicker should be limited to lower levels 99% of the time.

IEEE-1453 planning and compatibility levels for Pst and Plt

		ng Level 9%)	Compatibility Level (95%)
	MV	HV-EHV	LV
Pst	0.9	0.8	1.0
Plt	0.7	0.6	0.8

Concept: Design to the planning level to help ensure that the compatibility level limits are not exceeded.

17 Lecture 19

17

Rapid voltage changes - another type of flicker

- Tend to be intermittent
 - Motor starts, regulator stepping, capacitor switching
 Planning levels from IEEE Std. 1453-2022

Number of Changes, N	ΔV/V(%)		
	MV	HV-EHV	
N ≤ 4 per day	5-6	3-5	
N ≤ 2 per hour	4	3	
N ≤ 10 per hour	3	2.5	

Flicker sources

- Typical sources
 - Motors, welding or arc furnaces, compressors, some laser printers, car shredders, etc.
- PSQ mentions three conditions for noticeable light flicker:
 - A variable load
 - System impedance
 - Frequency of the voltage fluctuations
- A fourth condition:
 - Response of the lighting Seemingly equivalent LED lamps may vary

19 Lecture 19

19

Flicker mitigation

- Address the three conditions
 - Variable loads
 - Motor soft-starters or ASDs
 - · Line reactors on arc furnaces
 - · Design specifications in new equipment
 - Break up the load
 - Change the lighting
 - Fluorescent lamps flicker about 25% as much as an incandescent lamp for similar small voltage fluctuations
 - LEDs try another make/model

20 Lecture 19

Flicker mitigation

- System impedance/capacity
 - Reconductor
 - Larger transformers
 - Static VAR compensators
 - Inject reactive power during motor starts
 - May also correct power factor and filter harmonics
 - Thyristor switched capacitors

21 Lecture 19

21

Flicker mitigation

- Variation frequency
 - Modify control system -
 - Increase bandwidth on pressure, temperature, level, etc. to reduce number of starts
 - Modify mechanical system to reduce number of starts
 - Match equipment to the load
 - Build "inertia" into the system
 - Thermal mass
 - Increased storage of compressed air

22

Power Quality and Reliability Benchmarking: Defining terms (PSQ Ch. 8)

- · Index or metric
 - A specific measured parameter
 - Voltage distortion, voltage unbalance, temperature, etc.
- Benchmark
 - A standard against which performance is measured
 - Typically, a single value, a range, or an upper or lower limit
- Target
 - Goals for specific indices based on benchmarks, local constraints, and specific objectives
 - Typically, a range, an upper or lower limit, or a probability
 - Rarely a specific value unless zero

23 Lecture 19

____ 23

Defining terms

- Benchmarking
 - The process of evaluating performance against some standard level of performance
 - Uses one or more defined indices or metrics
 - For each index or metric, we need to know:
 - What is measured and how
 - How often it is measured
 - The benchmark for that index
 - The target for that index
- Aggregation
 - Grouping events within a time period or only considering the worst event in the time period

Some examples:

Index or metric	Benchmark	Target
Temperature (deg F)	Thermostat setting (68F)	Room at +/-1 deg. of setting
Speed in MPH	80mph (highway in Southern Idaho)	Cruise control – speed limit +/- 2mph.
Voltage THD	<8%	<8% for 95% of 10-minute average values over 1-week

A target may be more or less restrictive than the corresponding benchmark.

More restrictive target: The voltage benchmark is +/-5%. The distribution engineer designs the system to operate in a voltage range of +/-3%.

Less restrictive target: IEEE-519 allows harmonics to exceed the table values 5% of the time.

25 Lecture 19

25

Motivation - why benchmark?

- · Benchmarking helps drive improvement
 - Under-performing areas can be identified
 - "Best practices" can be determined
- Helps ensure fact-based decision making
 - The power quality may seem good or bad, but is it?
 - How good or bad is it, specifically?
- Benchmarking helps establish a common set of measurable expectations
 - Regulators, utilities, and customers can agree to, and document indices, benchmarks, and targets

26 Lecture 19

Motivation - why benchmark?

- Performance-based ratemaking
 - Links a portion of utility rates and profits to performance against specific benchmarks
- Power quality contracts (see example PSQ section 8.5.3)
 - Contracts with individual customers that ensure a certain level of power quality and reliability, or refunds, in exchange for long-term contracts
 - Example: Sag Score $SagScore = 1 \frac{V_A + V_B + V_C}{3}$ Aggregation interval is 15 min.

27 Lecture 19

27

University

Benchmarking issues

- Power quality and reliability may be inversely related
 - Recloser fuse saving versus trip saving
- · Customers do not classify events the way that utility engineers do
 - Process interruption versus power interruption
- Impact of events may vary from customer to customer
- A single "event" may contain numerous "components" and they may be different on different phases
 - Simultaneous sags and swells during ground faults

Benchmarking issues

- Not reasonable to expect the same performance across all transmission and distribution systems
 - Geography
 - Weather
 - System density/feeder length
 - Underground/overhead
 - Protection scheme
 - Animals/vehicles/vegetation

29 Lecture 19

29

Next time...

- More on benchmarking
- Examples