

ECE 528 - Understanding Power Quality

http://www.ece.uidaho.edu/ee/power/ECE528/

Paul Ortmann portmann@uidaho.edu 208-316-1520 (voice)

Lecture 20

1

1

University of Idaho

Today:

- Reliability and Power Quality Benchmarking
 - References
 - Benchmarking issues
 - Reliability indices
 - Power quality indices
 - Looking at real-world data

2 Lecture 20

References:

- Reliability indices and benchmarking
 - Text: PSQ section 3.8.6 (pg. 100+)
 - Standard: IEEE 1366 (2022)
- Power Quality indices and benchmarking
 - Text: PSQ Chapter 8
 - Standards:
 - IEEE 1159 General PQ definitions
 - IEEE 1250/EN50160 General PQ with performance ranges
 - IEEE 1453 Flicker
 - IEEE 1564 Voltage Sags and Swells

3 Lecture 20

3

Benchmarking issues

- Power quality and reliability may be inversely related
 - Recloser fuse saving versus trip saving
- Customers do not classify events the way utility engineers do
 - Process interruption versus power interruption
- Impact of events may vary from customer to customer
- A single "event" may contain numerous "components" and they may be different on different phases
 - Simultaneous sags and swells during ground faults

Benchmarking issues

- Not reasonable to expect the same performance across all transmission and distribution systems
 - Geography
 - Weather
 - System density/feeder length
 - Underground/overhead
 - Protection scheme
 - Animals/vehicles/vegetation

5 Lecture 20

5

Commonly used reliability indices (IEEE Std. 1366-2022)

- SAIFI System Average Interruption Frequency Index
 - How many sustained interruptions the average customer has per year
- SAIDI System Average Interruption Duration Index
 - How long the average customer is interrupted per year (hours)
- MAIFI Momentary Average Interruption Frequency Index
 - How many momentary interruptions the average customer has per year

6 Lecture 20

Commonly used reliability indices (IEEE Std. 1366-2022)

$$SAIFI = \frac{\sum Total\ Number\ of\ Customers\ Interrupted}{Total\ Number\ of\ Customers\ Served}$$

$$SAIDI = \frac{\sum Customer\ Minutes\ of\ Interruption}{Total\ Number\ of\ Customers\ Served}$$

$$MAIFI = \frac{\sum Total\ Number\ of\ Customer\ Momentary\ Interruptions}{Total\ Number\ of\ Customers\ Served} \qquad \text{(Not\ in\ PSQ)}.$$

Sustained versus momentary may vary from 1-5 minutes.

7 Lecture 20

7

University

Power Quality and reliability indices - Trends

- Standards have been and are being developed which combine power quality and reliability indexes and benchmarks
- In Europe, EN 50160: "Voltage characteristics of electricity supplied by public distribution systems"
- In the US IEEE 1250-2018: "Guide for Identifying and Improving Voltage Quality in Power Systems"

8 Lecture 20

EN50160 (pg. 322)

- Specifies acceptable limits, measurement interval, length of recording, and acceptance percentage.
- Example: Voltage sampled every 10 minutes for a week will be within 10% of nominal 95% of the time.
- · Sets limits for:
 - Frequency
 - Voltage sags/swells
 - Interruptions (short and long (>3 min))
 - Voltage unbalance
 - Voltage harmonics, and more

9

Lecture 20

_

US Service Quality Benchmarking

• IEEE-1250-2018: Steady-state characteristics

Voltage Metric	Benchmark	Target
Regulation	+/-5% for normal conditions +/-10% for unusual conditions	CP95%
Unbalance	2% negative sequence	CP95%
Distortion	5% THD 3% individual harmonics	CP95%
Fluctuation/flicker	Pst < 1.0 Individual step changes less than 4%	CP95%
Frequency	+/-0.015Hz	CP95%

Targets are based on 10-minute sample intervals

10 Lecture 20

Existing US power quality indices

- RMS variation indices
 - SARFIx: System Average RMS (variation) Frequency Index

$$SARFI_{X} = rac{\sum N_{i}}{N_{T}}$$
 customers experiencing qualifying events total customers served

- Standard values:
 - 140, 120, and 110 Overvoltage per ITI curve
 - 90, 80, and 70 Undervoltage per ITI curve
 - 50 typical motor contactor drop-out level
 - 10 IEEE interruption
 - CBEMA, ITIC, SEMI
- Note each event is counted so SARFIx can be larger than 1.

11

Lecture 20

11

Existing US Power quality indices

- The duration of the RMS variation can be incorporated into the preceding indices
 - SIARFIX
 - System Instantaneous Average RMS (Variation) Frequency Index
 - SMARFIX
 - System Momentary Average RMS (Variation) Frequency Index
 - STARFIX
 - System **Temporary** Average RMS (Variation) Frequency Index

12

Applications of RMS variation indices (see pg. 100+ of PSQ for reliability indices)

- SARFIx, SIARFIx, SMARFIx, and STARFIx can be determined for the system and for individual feeders or areas
- Feeders with below-average values can be targeted for improvement
- Feeders with above-average values can be studied for best practices

13 Lecture 20

13

Statistics

- Cumulative probability or frequency
 - Many standards, including IEEE 519-2022, EN50160, and IEEE-1250 allow the measured THD, voltage, frequency, etc. to fall outside the steady-state limits for short periods of time.
 - Cumulative probability
 - The sum of the probabilities of values above, below, or between specific points, depending on the limit in question
 - CP95
 - The point at which the "cumulative probability" equals 95%.

University of Idaho

Real-world benchmarking EN50160 report - application of CP95

Power Frequency

Range Threshold 60 Hz +1%/-1% 9 99.5% 100.0% 60 Hz +4%/-6% 100.0% 100.0%

PASSED PASSED

Supply Voltage Variations

Compliance:

Range Threshold CHA CHB CHC 277 V +10%/-10% 95.0% 100.0% 100.0% 100.0% PASSED 277 V +10%/-15% 100.0% 100.0% 100.0% 100.0%

Rapid Voltage Changes

Not available

Flicker

Compliance: Threshold CHA Range 95.0%

CHB CHC PASSED 97.5% 98.8% 97.5%

Supply Voltage Unbalance

Threshold Compliance

PASSED

17

Lecture 20

17

Harmonic indices (PSQ section 8.4)

- STHD95 System Total Harmonic Distortion CP95
 - Example use:
 - Comparing V_{THD} between different substations, is the substation's V_{THD} above or below the STHD95 value?
 - Calculation:
 - For each substation, the CP95 value of the V_{THD} recorded at the substation is calculated and weighted based on substation loading
 - The STHD95 is the "net CP95" value of all of the individual weighted CP95 values for individual substations

18 Lecture 20

Harmonic indices

- SATHD System Average Total Harmonic Distortion
 - An "average of averages"
 - Example use:
 - Similar to STHD95 find the mean THD of a group of feeders or substations
 - Calculation:
 - Sum the kVA-weighted, average THDs and divide by the total system kVA

20 Lecture 20

Use of harmonic indices

- STHD95 and SATHD describe the overall voltage THD on a system, but not the voltage THD experienced by individual customers
- Benchmarks may be chosen for these indices to help prioritize system improvements
- The data used to calculate STHD95 and SATHD can help identify areas of high and low distortion within a system
- · Monitoring indices over time can help identify trends

21 Lecture 20

21

Benchmarking: Real-world data issues

- Voltage THD may not be the same on all three phases
 - General approach is to average the voltage THD.
 - Simpler reporting (one number)
 - May mask high values on one phase
- Numbers versus statistics
 - Some outliers may still require attention
 - Some outliers may get unnecessary attention
 - A statistician can be helpful

22 Lecture 20

Including Power Quality and reliability in distribution planning – the concept

- Additional utility system costs will be offset by reduced customer costs
 - More frequent tree-trimming
 - Shorter spans
 - Longer cross-arms
 - Increased animal guards
 - Reclosers/sectionalizers/fuses
 - Designing for higher wind-loading

23 Lecture 20

23

Including Power Quality and reliability in distribution planning - difficulties

- Accurate customer costs are difficult to obtain
 - Labor to respond to events
 - Production quantity and quality
 - Equipment damage
 - Disposal of waste
 - Failure to meet delivery obligations, and more...
- Certain PQ or reliability improvements may only benefit one customer or a small group of customers
- Normal statistical variation can mask the true impact of system changes in the short term

24 Lecture 20

Including Power Quality and reliability in distribution planning - contracts

- In the case of power quality contracts, costs are assigned to specific events
- Utility can analyze the cost of power quality events accurately and select improvements accordingly
- Offsetting utility costs, in the form of contract penalties, provide incentives to maintain or improve power quality and reliability

25 Lecture 20

25

Power quality contract example: Sag score

- What counts:
 - 75% or less on one or more phases

15-minute aggregationNo minimum duration

All three phases are included, regardless of voltage

Voltages over 1pu set to 1pu

- What does not count:
 - Sags on unloaded feeders

 Customer-caused sags (See PSQ, section 8.5) $SagScore = 1 - \frac{V_A + V_B + V_C}{3}$

Try one:

Va=0.818 pu Vb=0.574 pu

Vc=0.823 pu

Sag score?:

it cost?...

But how much does

26 Lecture 20

Power quality contract example:

Calculating Payments

- SGPA (Service Guarantee Payment Amount) = \$50,000
- Target sag score = 3.000
- Prior to sag, the score was 2.900 (no payment due)
- Payment starts for sag scores above target.
- For this example: Payment = (new sag score target) x \$50,000

 $= (2.9000 + ___ - 3.000) \times $50,000$

• After the target is reached: Payment = (individual sag score) x \$50,000

27 Lecture 20

27

Next time...

- Start Distributed Generation (Distributed Resources) and Power Quality
 - Read Chapter 9
 - Homework 6 available