ECE 529

UTILITY APPLICATIONS OF POWER ELECTRONICS

SESSION no. 33
Harmonic filters

\[V_n \]

Load harmonic behavior

Most harmonic producing loads
- Power converters that is drawing current - regulated or unregulated
- controlled cases depend on sinusoidal voltage

Diagram:

- Battery
- Rectifier
- Diode

No other legible text or symbols present in the image.
- Reducing current harmonics

1) Filters
 - Passive
 - Active

5th, 7th, 10th
(2) Series active filters

Each phase

(3) Hybrid Active filters

A

B

Load
(4) Harmonic Cancellation

- more cost effective with high power applications than lower power

\[I_n = (n \cdot p + 1) \]

\(p = \text{pulse} \)

\(n = 0, 1, 2 \ldots \)

\(I_1, I_3, I_5 \)

\(Z_{sec} \)

\(m, M \)

\(V_{TH2} \)

\(I_{1y}, I_{3y}, I_{5y, 10} \)

\(I_1, I_3, I_5 \)

\(V', V'_{L-30^\circ}, V_{L-30^\circ} \)

\(I_1 | L-30^\circ \text{ pos seq} \)

\(I_5 | L-150^\circ \text{ neg seq} \)

\(I_{1y} | L-210^\circ \text{ pos seq} \)

\(\text{Conversion configuration} \)

\(V_{DC} \)
can also do

18 pulse
24 pulse
48 pulse
etc

require more complicated transformers
- conventional winding
 with a zig-zag winding

\[V_{BC} \]

\[\theta = 15^\circ \]
Voltage harmonics

- much more challenging to filter passively

VSC

V_{AB}

V_{NG}

360 Hz
L acts as low pass...
Solutions

1. 12 pulse, 24 pulse, 48 pulse

 → 1990's - VSC based FACTS devices
 - Westinghouse largely
 - Transformer connecting
 - Plus phase shift between bridges

2. Pulse width modulation
 - raising switch freq
3. Multi-level converters