ECE 529

UTILITY APPLICATIONS OF
POWER ELECTRONICS

SESSION no. 46
AC Fault Behavior

- Controls will have a huge impact
- Converter topology some effect
 - Most topologies are ungrounded
 - Transformer may be Yg-D (delta faces converter)
 - Some variation with vendors

Inner Controls

- Most schemes use inner current regulators
 - Fact acting, protect devices from excess currents
 - Possibly 2 sets, one each for pos and neg sequence

HVDC Controls
Spring 2019
Impact of Inner Controls

- Converter will limit current for ac faults
 » Same current for variety of fault locations
 » A little different in older schemes
- Doesn’t vary much with converter topology
- Generally fairly balanced currents
- Try to support local voltage
 » Current at leading power factor
- Some reports of impact on distance protection

Impact on Distance Protection

- Source: L. He, C.C. Liu, “Effects of HVDC Connection for Offshore Wind Turbines on AC Grid Protection,” 2013 IEEE PES General Meeting
DC Fault Behavior

- Converter topology poses problem
- Diodes form uncontrolled path
 - Known since 1980's
- Pole to pole versus pole to ground

Clearing DC Faults

- To date, no systems use DC breakers for this problem
- Siemens proposed IGBTs in old HVDC plus designs
- Full bridge based MMCs can block dc fault currents
 - Doubles device count and increases losses
 - So schemes use half-bridges
- Rely on ac side breakers to interrupt dc fault current – point to point systems
CIGRE-B4
(Study Committee)
c-cigre.org
AC System Impact

- AC system will see dc fault current
 - Will most often look like phase to phase fault
 - Possibly 3 phase depending on breaker response time
- Followed by load (or source) rejection since dc power transfer will go to zero
 - Will not see temporary overvoltages as with LCC

Circuit Interruption Options

- Multiterminal HVDC Grids will need DC breakers
 - Possibly as little as 2 ms response needed
- Lack of DC breakers (at least fast ones)
 - BPA test, metallic earth return breakers
 - IGBTs in line (point to point better)
 - Drawbacks: ratings, losses and they don’t truly “open” and “isolate”
 - Recent developments HVDC breakers
Power

Pure Electronic Transformer

\[
\begin{align*}
\frac{V}{\sqrt{2}} & \div \frac{V}{\sqrt{2}} - 3 \& 3 - \frac{V}{\sqrt{2}} & \div \frac{V}{\sqrt{2}} \\
\end{align*}
\]