ECE 320: Lecture 2

Notes

Basic AC Circuit Analysis (Continued)

$$
\begin{array}{ll}
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \cos (\omega \cdot \mathrm{t}+\phi) \quad \text { Volts } \quad \begin{array}{l}
\text { (Note, units named for a person always start with } \\
\text { capital letters). }
\end{array}
\end{array}
$$

$\overrightarrow{\mathrm{V}}=|\mathrm{V}| \cdot \mathrm{e}^{\mathrm{j} \cdot \phi} \quad$ Volts \quad where $\quad|\mathrm{V}|=\frac{\mathrm{Vm}}{\sqrt{2}} \quad$ RMS Phasor

- RMS phasor written using upper case, instaneous time quantity lower case.
- The frequency is assumed in this notation.
- The angle of voltage source is the angle relative to a reference point which is given the angle of 0 degrees (or radians).
- This is especially important when there are a large number of voltage sources in a system. In a large power system there might be hundreds of generators to represent.

Response of AC Circuit

- Now lets connect this voltage source to a series R-L circuit. R-L circuits are the most comm type. Any conductor or wire has inductance, enough to impact the circuit behavior.
- Also, every conductor has parasitic capacitance relative to some reference, how at 60 Hz , thi capacitance has a small impact on circuit response unless the conductor is very long.
- We'll look at cases where discrete capacitors are added intentionally.
- The differential equation for this circuit is:

$$
\mathrm{v}(\mathrm{t})=\mathrm{R} \cdot \mathrm{i}(\mathrm{t})+\mathrm{L} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}(\mathrm{t})
$$

- The resulting current when the source is switched into the circuit is:
$i(t)=\left[\frac{-V m}{\sqrt{R^{2}+(\omega \cdot L)^{2}}}\right] \cdot \cos (\phi-\theta) \cdot e^{-\left(\frac{R}{L}\right) \cdot t}+\left[\frac{V m}{\sqrt{R^{2}+(\omega \cdot L)^{2}}}\right] \cdot \cos (\omega \cdot t+\phi-\theta) \quad$ Amps
- The first term is a decaying dc offset. The initial amplitude of this offset depends on t] angle where the switch is closed. This is a transient term
- The second term is the steady-state component. This is our primary concern in this cle
- Not that we have an additional term in the angle, which describes the R-L circuit:

$$
\theta=\operatorname{atan}\left(\frac{\omega \cdot \mathrm{L}}{\mathrm{R}}\right)
$$

- The angle of the current is now: $\phi-\theta$
- If we only look at the sinusoidal steady-state component, we can compute a RMS magnitude

$$
\begin{aligned}
& |I|=\left[\frac{\frac{V m}{\sqrt{2}}}{\sqrt{R^{2}+(\omega \cdot L)^{2}}}\right] \cdot \cos (\omega \cdot t+\phi-\theta) \quad \text { Amps } \\
& I=|I| \cdot e^{j \cdot(\phi-\theta) \quad \text { Amps }}
\end{aligned}
$$

- We define Impedance as:

$$
\vec{Z}=\sqrt{R^{2}+(\omega \cdot L)^{2}} \cdot e^{j \cdot \theta} \quad \Omega
$$

- This is more commonly written as:

$$
\overrightarrow{\mathrm{Z}}=|\mathrm{Z}| \cdot \mathrm{e}^{\mathrm{j} \cdot \theta} \quad \Omega
$$

- Note that frequency is still assumed here, but we no longer have a time varying function
- We can also describe an admittance as:

$$
\vec{Y}=\frac{1}{\rightarrow}=|Y| \cdot e^{-j \cdot \theta} \quad \text { Mhos or Siemens }
$$

- Where

$$
\begin{array}{ll}
\vec{Z}=\mathrm{R}+\mathrm{j} \cdot \mathrm{X} & \text { Resistance and Reactance } \\
\overrightarrow{\mathrm{Y}}=\mathrm{G}+\mathrm{j} \cdot \mathrm{~B} & \text { Conductance and Susceptance }
\end{array}
$$

- In general we can't say that $\mathrm{G}=1 / \mathrm{R}$ or $\mathrm{B}=1 / \mathrm{X}$ (unless the X or R terms are zero respectively)
- For an pure inductor $(\mathrm{R}=0)$. Note that pure inductors and pure resistors don't really exist, every circuit will have at least some R and some L , but for now neglect the R

$$
X=\omega \cdot L \quad B=\frac{1}{(\omega \cdot L)}
$$

- For an pure capacitor $(\mathrm{R}=0)$. Again, most capacitors have some small series resistance, but for now neglect the R (which is done in many cases) :

$$
X=\frac{1}{\omega \cdot C} \quad B=\omega \cdot C
$$

- Now lets look at impedance angles. For a pure resistance $(X=0)$

$$
\theta=0
$$

- For a pure inductance:

$$
\theta=90 \mathrm{deg}
$$

- For a pure capacitance:

$$
\theta=-90 \mathrm{deg}
$$

- In general, most cirucit are combination, so the angle of the impedance will somewhere in the range:

$$
90 \operatorname{deg} \leq \theta \leq 90 \operatorname{deg}
$$

- Starting from:

$$
\mathrm{I}=\frac{\vec{V}}{\vec{T}} \underset{\mathrm{Z}}{ }
$$

- We can define the Power Factor Angle as the angle between the voltage anc the current.

$$
\text { pf_angle }=\phi_{\mathrm{V}}-\phi_{\mathrm{i}}
$$

- For the simple configuration described above we would have:

$$
\text { pf_angle }=\theta
$$

- We may also use this to define the effective angle computed from measured voltages and currents.
- Just as with the impedance angle we will have:

$$
90 \text { deg } \leq \text { pf angle } \leq 90 \mathrm{deg}
$$

unless there is a polarity problem in the measurements.

- We can also define the Power Factor as

$$
\mathrm{pf}=\cos \left(\mathrm{pf} _ \text {angle }\right)
$$

- Where (as a result of the limits on the pf_angle):

$$
0 \leq \mathrm{pf} \leq 1.0
$$

- Because of this, when one writes (or types) the value for a power factor, they also need to indicate whether the power factor is leading or lagging.
- A lagging power factor means "I lags V". This is common with an R-L circuit. This means that the zero crossing for the current waveform appears after (to th right) the current zero for the voltage.
- A leading power factor means "I leads V". This is common with a series R-C circuit. This means that the zero crossing for the current waveform appears before (to the left) the current zero for the voltage.

Next time:

We will discuss methods for calculating power.

