ECE 320: Lecture 44

Notes

Misc Notes:

- I have an ECE faculty meeting during office hours today
- Homework #9 due at 6:00pm instead of 5:00pm
- Hw 9 solutions will be posted this weekend.
- I will try to get missing lecture summaries on the web page, but I doubt that I will be get al them up before tuesday. The material that is missing is all covered in Mohan.

Final Exam

- Tuesday, 10:00am 12:00pm
- 1 sheet (both side) of 8.5in x 11in paper with notes
- Sample exam solutions will be posted this weekend

Topics

Exam I material:

- Single phase AC circuits (time domain and phasors)
- Complex power, real power, reactive power, and power factor
- Hamonics analysis
 - * Fourier series
 - * Fundamental component RMS versus true RMS
 - * Total Harmonic Distortion
 - * Crest Factor
 - * True power factor, displacement factor, distortion factor
- Transformers
 - * Ideal transformer relationships
 - * Transformer equivalent circuit with resistances and inductances
 - * Short circuit/open circuit tests
 - * Transforming impedances across the transformer
 - * Voltage regulation
 - * Efficiency
- Magnetic circuit analysis
 - * Ampere's Law
 - * Faraday's Law
 - * Lenz's Law
 - * Relationships between H, B, ϕ , e
 - * Reluctance
 - * Magnetic saturation
 - * Computing inductance
 - * Detemining leakage and magnetizing inductances of transformers

Exam 2 Material

- Speed Voltage
- Torque production
- Basic DC generator and DC motor operation
- Seperately excited machine
- Determine speed if you know Ea and If
- Ea*Ia = $\tau * \omega$
- Shunt Field machine
- Series excited
- Compound excited
- Motor starting behavior
- Speed control
- Fundamentals of power electronics
- Buck converter
- Basic relationships
- Determination of boundary of discontinuous conduction

New Material Since Exam 2

The exam will be weighted a little more heavily on this material

- Boost and Buck-Boost Converters
- Input/output relationships for each type of dc-dc converter
- Determine boundary of discontinous conduction for each
- Determine peak to peak voltage ripple for each dc-dc converter or size the capacitor to accomplish a specific ripple
- Closed loop current regulation-- why useful?
- Single phase diode rectifiers:
 - * Basic circuit
 - * Typical current waveforms for resistive, R-L and parallel R-C dc loads
 - * Commutation overlap and impact on dc voltage in continuous conduction
 - * Continuous versus discontinuous conduction

* For a capacitor filtered converter determine peak dc current and initial conduction angle for the dc current

* Determine true power factor given the current waveform.