EE/CompE 243 State Machine Analysis Examples

- **1.** For the state machine shown in the figure below do the following:
 - (a) Find the excitation equations for the flip-flops. Then construct a transition table, a state table, and a state diagram. Is this a Moore Machine or a Mealy Machine?
 - (b) What is the output sequence when the input sequence is X=01100?
 - (c) Draw a timing diagram for the input sequence from part (b). Show P_c , X, A, B and Z. Assume input changes between clock pulses.

(a) Derive state equations

$$J_{A} = ((X'B)'(XB')')' = X'B + XB'$$

$$K_{A} = X'B$$

$$J_{B} = (X' + A')' = XA$$

$$K_{B} = (X' + A')' = XA$$

$$A + = J_{A}Q' + K'_{A}Q = (X'B + XB')A' + (X'B)'A$$

$$= A'BX' + A'B'X + AX + AB'$$

$$B + = J_{B}Q' + K'_{B}Q = XAB' + (XA)'B$$

$$= AB'X + BX' + A'B$$
$$Z = (A'+B')' = AB$$

It is a Moore machine, since Z only depends on A, B not on X

Present State	Next S	tate (A+B+)	Present State		Next State (A+B+)		
AB	X=0	$\mathbf{X} = 1$	Ζ	AB	X=0	X = 1	Ζ
00	00	10	0	SO	S0	S 3	0
01	11	01	0	S 1	S2	S 1	0
11	01	10	1	S 2	S 1	S 3	1
10	10	11	0	S 3	S 3	S2	0

- (b) Based on the state/output diagram above, we see that Z will be 1 only when AB = 11. Note also that we can consider the initial output for Z to be a false output until the first falling edge of the clock. So we get Z = (0)00101 as shown in the figure below.
- (c) Timing diagram for network:

Propagation delay is assumed to be 0.

2. Do the following for the state machine shown below:

a. Construct a state table and state diagram

		$Q_1 + Q_2$	$Q_2 + Q_3 +$	2	Z	0/0 1/1
state	$Q_1 Q_2 Q_3$	X=0	X=1	X=0	X=1	0/0 1/1
S_0	000	001	001	0	1	
S_1	001	011	011	0	1	(S_1) or (S_2) (S_2) (S_3)
S_2	010	100	101	1	0	
S_3	011	010	011	1	0	1/0 $1/0$ $1/0$ $1/0$ $0/1$
S_4	100	001	001	0	1	1/1 $1/1$ $1/0$ $1/0$ $1/0$
S_5	101	011	011	0	1	(\mathbf{S}_{0}) $(\mathbf{S}_{1})^{-0/0}$ $(\mathbf{S}_{2})^{-1/0}$ $(\mathbf{S}_{2})^{-1/0}$
S_6	110	100	101	1	0	
S_7	111	010	011	1	0	

b. Draw a timing diagram for the network. Show X, clock, Q1, Q2, and Q3. Use the input sequence X=01011 and assume that X changes midway between clock pulses. Indicate any false output changes.

c. Compare output sequence from timing diagram with the one predicted by the state diagram. From timing diagram: 0 1 (0) 1 0 1 From state diagram: 0 1 1 0 1

d. How can you correct the difference?

By changing input on falling edge of the clock the false outputs can be eliminated.

3. A Mealy synchronous state machine has 1 input, 1 output and 2 flip-flops. A timing diagram is shown below. Construct a state table and a state diagram

Propagation delay is assumed to be 0 division

Since the timing diagram shown here is for a Mealy sequential network, we know that the Mealy network depends on both the present state and the inputs.

For this network X is the input and Z is the output and Q_1 , Q_2 represent the present states.

COE/EE 243	Session 34; Page 5/5
Digital Logic	Spring 2003

The state table can be constructed by simply finding the output value(Z) for various input combinations from the timing diagram.

Present State	Next S	State $(Q_1 + Q_2 +)$	Z_1Z_2		
Q_1Q_2	X=0	X=1	X=0	X=1	
00	01	10	1	0	
01	00	11	0	1	
10	11	00	1	0	
11	10	01	0	1	

Present State	Next S	tate $(Q_1 + Q_2 +)$	Z_1Z_2		
Q_1Q_2	X=0	X=1	X=0	X=1	
SO	S 1	S2	1	0	
S 1	S 0	S 3	0	1	
S2	S 3	S 0	1	0	
S 3	S 2	S 1	0	1	

