Final Exam Topics

Chapter 2 :

- Number systems (decimal, hexadecimal, octal, binary)
- Converting between different bases
- Binary arithmetic-add, subtract, multiply
- 2's and 1's compliment math
- Binary codes

Chapter 3 :

- Understanding differnces between logic families
- Voltage levels versus logic levels
- Fan out
- Propagation delay
- Problems with noise
- Noise margin
- Anything in this chapter will be covered only in short answer questions to see if terms understood
Chapter 4 - Basic boolean operators
- Logic symbols
- truth tables
- logic diagrams
- Multiplying out/factoring expressions
- Sum of products
- Product of sums
- Applying theorems and axioms
- Inversion
- Duality
- XOR/XNOR
- Using truth tables in network design
- Minterm expansions $\operatorname{SUM}(\mathrm{m}(1,3,5 \ldots)=.===$ terms with $\mathrm{f}=1$
- Maxterm expansions $\operatorname{PROD}(\mathrm{M}(1,3,5 \ldots)=.===$ terms with $\mathrm{f}=0$
- Don't cares (incomplete specification)
- Karnaugh maps (3,4,5 Var)
- Quine-McCluskey
- You will be asked to simplify expressions, get standard POS or SOP from set of minterms etc.....
- Multilevel networks
- count levels
- number of gates
- number of gate inputs
- Functionally complete sets
- NAND networks with 2 or more levels
- NOR networks with 2 or more levels
- converting AND-OR networks to NAND or NOR only network
- creating NAND or NOR network from expression
- Multiple output networks
- using common terms to reduce number of gates and inputs

Chapter 5 :

- Multiplexers
- 4 to 1,8 to 1 , etc
- implement boolean functions with MUXs
- Decoders
- 2 to 4,3 to 8,4 to 16 , etc.
- Combine outputs of decoder with logic gates to realize expressions
- Programmable Logic Arrays (PLA's)
- can use to realize functions
- AND - OR network where can program connections for ANDs and ORs
- Programmable Array Logic (PAL's)
- can use to realize functions
- AND - OR, AND-NOR, etc. network where can program connections for ANDs only.

Chapter 7 :

- Flip flops and latches
- Basic understanding
- Timing Diagrams
- Characteristic Equations
- Analysis of synchronous sequential networks
- Excitation equations for flip-flop inputs
- Substitute excitation equations into flip-flop characteristic eqs.
- Construct transition table with output values added
- Create state table
- Draw state diagram (optional)
- Moore versus Mealy networks
- False outputs
- Be able to start from timing diagram or state diagram
- Flip-flop state transition tables
- Implementing circuits using flip-flops
- Derivation of state graphs and tables for Mealy and Moore Networks from set of objectives
- Clocked Synchronous State-Machine Design Summary
- Design process is reverse of analysis process:

1. Construct state/output table corresponding to word description. Can also start with a state diagram.
2. Minimize number of states in table.
3. Choose set of state variables.
4. Create transition/output table.
5. Choose flip-flop type.
6. Create excitation table.
7. Derive excitation and output equations.
8. Draw the logic diagram.
9. Verify the implementation
10. Simulate
11. Implement in hardware

Chapter 8 :

- MSI circuits for sequential logic
- IC Shift Registers (74178)
- IC counters (74×163)
- 3 state buffers and 3 state bus
- Programmable Logic Devices for sequential circuits
- PALs-some have built-in flip-flops
- Output macrocells

Chapter 10 :

- Field programmable gate arrays
- ROMs, PROMs, EPROMs, EEPROMs
- essentially decoder combined with memory array
- realize functions with ROM

Part of Chapter 5 and Chapter 8 :

- Networks for addition and subtraction
- full adder circuits
- binary adders, accumulators
- Circuits for mult/division

