
COE/EE 243	Session 40; Page 1/6
Digital Logic	Spring 2003

COE/EE 243Sample Exam #5 SolutionNov 29, 2000

1. (12 pts) A sequential circuit has 2 rising edge triggered flip-flops (outputs A and B), two inputs (X and Y) and one output Z. The logic expressions for this circuit are:

$$D_a = X' \cdot Y + X \cdot A$$
$$J_b = X' \cdot B + X' \cdot A$$
$$K_b = Y \cdot B$$
$$Z = X \cdot B$$

A Sketch a circuit diagram

B Construct a transition table

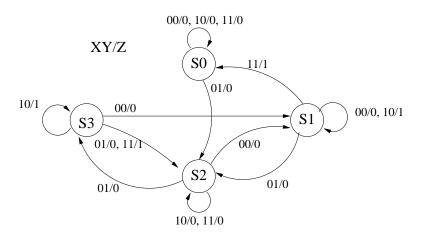
First, construct the flip-flop excitation table:

		D_a	$\begin{array}{c} & J_b \ K_b \\ XY=00 \ 01 \ 10 \ 11 \end{array}$				Z					
A B	XY=00	01	10	11	XY=00	01	10	11	XY=00	01	10	11
	0											
01	0	1	0	0	10	11	00	01	0	0	1	1
10	0	1	1	1	10	10	00	00	0	0	0	0
11	0	1	1	1	10	11	10	11	0	0	1	1

Now apply the next-state equations for the two types of flip-flops.

For the D flip-flop, $Q + = D_a$.

For the JK flip-flop, $Q+ = J_b \cdot B' + K'_b \cdot B$


The resulting transition table is as shown:

	A	+B	+		Ζ			
A B	XY=00	01	10	11	XY=00	01	10	11
0 0	00	10	00	00	0	0	0	0
01	01	10	01	00	0	0	1	1
10	01	11	10	10	0	0	0	0
11	01	10	11	10	0	0	1	1

C Construct a state diagram

A	Assign states: $S0 = 00$, $S1 = 01$, $S2 = 10$, $S3 = 11$ and then make a state table									
	Current	Ne	ext St	ate			Ζ			
	State	XY=00	01	10	11	XY=00	01	10	11	
	S 0	S 0	S 2	S 0	S 0	0	0	0	0	-
	S 1	S 1	S 2	S 1	S 0	0	0	1	1	
	S2	S 1	S 3	S 2	S 2	0	0	0	0	
	S 3	S 1	S2	S 3	S 2	0	0	1	1	

The resulting state diagram is shown below.

- 2. (6 pts) Suppose a Moore machine has three flip-flops, two inputs, and five outputs. Answer the following.
 - A What is the maximum and minimum number of states in the state diagram?

Maximum number is $2^{numflip-flops} = 8$. The minimum number is also 8, since 3 flip-flops will create 8 distinct states whether they are used or not.

B What are the maximum and minimum numbers of transition arrows starting at a particular state?

The maximum number is $2^{numinputs} = 4$ in this case. The minimum is 1 if all for input conditions lead to the same next state.

C What are the maximum and minimum numbers of transition arrows ending at a particular state?

The maximum number is $2^{numflip-flops} * 2^{numinputs} = 32$. The minimum is 0.

D What are minimum and maximum number of output patterns that can appear?

The minimum number is 1 if all of the states have the same output pattern for each input (the output pattern is the set of 0's and 1's for the 5 outputs for a given input combination). The maximum number that can be exist for a given state machine (and shown on a state table) will be 8 (the number of states).

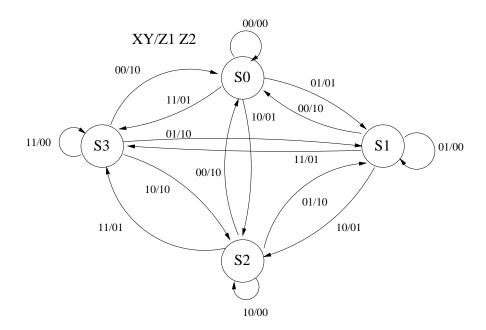
E Are the outputs synchronous or asynchronous?

Since its a Moore machine, the outputs are synchronous (they can change with the clock)

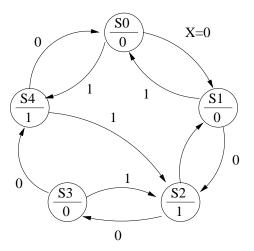
F Which of the above will change for a Moore Machine? (give the letter and the new answer)

Part **D** will change. The minimum number will stay the same. The maximum number of states is the smaller of $2^{numflip-flops} * 2^{numinputs}$ or $2^{numoutputs}$. In this case, both are 32.

Part \mathbf{E} will change to asynchronous since the outputs can change when the inputs change, and the inputs aren't necessarily synchronized with the clock.


COE/EE 243	Session 40; Page 4/6
Digital Logic	Spring 2003

3. (14 pts) Draw the state diagram for a Mealy state machine with two inputs (X and Y) and two outputs (Z1 and Z2). The two inputs represent a two bit binary number (N). If the present value of N is greater than the previous value of N then Z1=0 and Z2=1. And if the present value of N is less than the previous of N then Z1=1 and Z2=0. Otherwise Z1=Z2=0.


One option is to assign states (flip-flop outputs A and B) as:

State	Х	Y
S 0	0	0
S 1	0	1
S 2	1	0
S 3	1	1

Note that this is not the only solution.

4. (18 pts) Complete the design for the state machine described in the state diagram below.

A. Write out the state table

_

Present	Next		
State	X=0	X=1	Ζ
S 0	S 1	S4	0
S 1	S 2	S 0	0
S2	S 3	S 1	1
S 3	S 4	S 2	0
S 4	S 0	S 2	1

B. Assign states using a simple binary order (S0 = ABC = 000) and assign the unused states to go to State S2 as their next state if X=1 and S1 if X=0. The write out the transition table.

Set the outputs for the unused states as don't care conditions

			A+B		
Α	В	С	X=0	X=1	Ζ
0	0	0	001	100	0
0	0	1	010	000	0
0	1	0	011	001	1
0	1	1	100	010	0
1	0	0	000	010	1
1	0	1	001	010	Х
1	1	0	001	010	Х
1	1	1	001	010	Х

C. Write out the flip-flop input excitation table assuming JK flip-flops are used

Since we have JK flip-flops, we know $Q + = J \cdot Q' + K' \cdot Q$ and we can create a flip-flop excitation table as follows.

Q	Q	+ J	Κ					
0	0	0	Х					
0	1	1	Х					
1	0	X	1					
1	1	X	0					
	i							
		J_{a}	K_a	J_b	K_b	J_{c}	K_c	
AB	С	X=0	X=1	X=0	X=1	X=0	X=1	Ζ
00	0	0X	1X	0X	0X	1X	0X	0
00	1	0X	0X	1X	0X	X1	X1	0
010	0	0X	0X	X0	X1	1X	1X	1
01	1	1X	0X	X1	X0	X1	X1	0
10	0	X1	X1	0X	1X	0X	0X	1
10	1	X1	X1	0X	1X	X0	X1	Х
110	0	X1	X1	X1	X0	1X	0X	Х
11	1	X1	X1	X1	X0	X0	X1	Х
		1		1		1		I .

D. Sketch the circuit diagram

Using K-maps to find minimal expressions for the J and K inputs for each flip-flop and for Z we get the following:

$$J_{a} = X \cdot B' \cdot C' + X' \cdot B \cdot C \qquad (1)$$

$$K_{a} = 1$$

$$J_{b} = X \cdot A + X' \cdot A' \cdot C$$

$$K_{b} = X' \cdot A + X' \cdot C + X \cdot A' \cdot C'$$

$$J_{c} = X' \cdot A' + X' \cdot B + A' \cdot B$$

$$K_{c} = X + A'$$

$$Z = A + B \cdot C'$$