Show your work. Do NOT use a calculator!

1. $(9 \mathrm{pts})$ Complete the following table of equivalent values.

Binary	Octal	Decimal	Hexadecimal
1011.0011			
		29.99	
	33.23		

2. (12 pts) Calculate the following
a) $(11001)_{2}$ plus $(101)_{2}$
b) $(11010)_{2}$ minus $(10101)_{2}$ using 1 's complement representation
c) $(1101)_{2}$ times $(1001)_{2}$
d) $(101101)_{2}$ divided by $(110)_{2}$
3. (9 pts) Complete the following table of equivalent values. Use binary numbers with a sign bit and 5 bits for the value

Decimal	Signed Magnitude	Two's Complement	One's Complement
-11			
			111101
	100001		

4. (8 pts) Give the Characteristic equations and the Excitation tables for the $S R$ and $J K$ flip-flops.
5. (10 pts) Explain the difference between a Moore machine and a Mealy machine.

What is the same about both kinds of state machines?

Draw a block diagram indicating the structure of a general state machine. Indicate on the diagram where one can find the present state and next state.
6. (5 pts) Give a truth table and a standard sum of products expression that describes $F=A \oplus B \oplus C$
7. (8 pts) Indicate how a Nand gate can be used to implement:
(a) An Inverter:
(b) An And Gate:
(c) An Or Gate:
(d) Because a Nand gate can be used to implement all three basic Boolean functions, how would we describe it?
8. (8 pts) Using the 74ALS163 counter shown below and logic gates design a counter that counts in the sequence $3,4,5,6,7,8,9,10,11,12,3, \ldots$ Connect all unused inputs. The counter may cycle through several unwanted states before settling into the final count sequence. Q_{d} is the MSB of the counter output.

9. (6 pts) Find a minimum sum of products expresssion for $F=a b c^{\prime}+b c^{\prime} d^{\prime}+c d+a^{\prime} b$
10. (10 pts) Create a state diagram for a sequence detector that outputs a 1 when it detects the final bit in the serial data stream 1101.
11. (10 pts) Determine the D flip-flop excitation equations for the system represented with in the statetransition table below. Assign states: $S 0=00, S 1=01, S 2=10$ and $S 3=11$.

Present	Next State		Output
S	X=0	X=1	Z
S0	S1	S2	0
S1	S1	S2	1
S2	S2	S3	1
S3	S3	S0	0

12. (5 pts) Give the output expression for the 8 -to- 1 MUX shown below.

