Goals for Lecture 1:

1. Review some basic material to help transition from Joe's style to Andy's.
2. Transition to more of a system block diagram; connecting physical significance to individual components of the diagram.
3. Transformer voltage: develop a block diagram and simulink representation of an inductor and discuss concepts below. Evaluate step changes to the input.
4. Transformer voltage: develop a block diagram and simulink representation of a two-winding transformer. Look at step changes in the input and output.
5. Transformer voltage: Look at self and mutual inductances. Show that the transformer goes to an ideal model if leakage is ignored.
6. Saturation: Saturation impacts some gain block but not others
7. Introduce saturation model Se.

Concepts for Lecture 1:

1. Flux linkages do not change instantly
2. Voltages drive flux linkages and currents develop to support flux linkages
3. Inductance: Self versus mutual
4. Saturation impacts on inductances
5. Time constant is inverse of loop gain (in first order system)

Review from Andy's perspective
Start with Ampère's Law: \[\oint \mathbf{H} \cdot d\mathbf{e} = \int \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s} \]

\[\text{Current Density} \quad (\text{Am}^{-2}) \]
\[\text{Displacement current} \]

\[\times \] assumption: We can ignore displacement current

\[\oint \mathbf{H} \cdot d\mathbf{e} = \int \mathbf{J} \cdot d\mathbf{s} \]

Integrate in core of inductor

\[H_L = N_i \]

effective length through core

\[\text{Inductor} \]

\[N \text{ turns} \]
\[B = \mu H \quad \text{or} \quad H = \frac{B}{\mu} \]

* Permeability \((V/m)\) * is a property of the material
* Sometimes \(\mu = \mu_r \mu_0\)

* \(\mu_r\) is about 4000 for transformer iron

\[\phi = AB \quad \therefore B = \frac{\phi}{A} \]

* Cross sectional area of core

Substitute \(\phi/A\) for \(B\) in \(H = \frac{B}{\mu}\)

\[H = \frac{\phi}{\mu A} \]

Substitute for \(H\) in equation \(HL = NI\)

\[\frac{\phi L}{\mu A} = NI \]

Let \(\sigma R = \frac{L}{MU} \quad \text{or} \quad \Phi = \frac{1}{R} = \frac{\mu A}{L} \]

\[\Phi \quad \frac{\phi}{\sigma} = NI \]

\[\therefore \phi = N\Phi I \]

* As material saturates \(\mu \downarrow \frac{1}{3} \quad \sigma \downarrow \frac{1}{3} \quad \Phi \downarrow \)
Inductor Continued

Introduce flux linkage \(\Psi \)
\[\Psi = N \phi \]
Substitute \(N \phi \) for \(\phi \) yields
\[\Psi = N^2 \phi i \]

Define Inductance
Let \(L = N^2 \phi \) or \(L = \frac{\Psi}{i} \). \(\therefore i = \frac{\Psi}{L} \)

Faraday's Law
\[e = \frac{d\Psi}{dt} = -\Psi \]

Circuit equation

\[V = iR + e = iR + \Psi \]

\(\therefore \Psi = V - iR \)

Use the following equations to build a block diagram
\[e = \Psi = V - iR \]
\[i = \frac{\Psi}{L} \]

Figure 3.10 in Kundur has wrong direction on \(\phi \).
Inductor Continued

\[i_R = \frac{\psi}{L} \]

\[i = \frac{\psi}{L} \]

\[e = \dot{\psi} + v - i_R R \]

\[v \rightarrow \frac{\dot{\psi}}{C} \rightarrow \psi \rightarrow \frac{\psi}{L} \rightarrow i = \frac{\psi}{L} \]

Note: \(\psi \) cannot change instantly w/ finite \(\dot{\psi} \).

\(v \) drives the value of \(\psi \).

\(i \) is determined by \(\psi \).

Initial conditions in steady state (SS)

\[\dot{\psi}_0 = 0 \]

\[\therefore \quad \frac{\dot{\psi}}{C} - i_0 R = 0 \]

\[\therefore \quad \frac{\dot{\psi}}{C} = i_0 R \quad \{ \text{Kirchhoff will be relieved} \} \]

\[\frac{\dot{\psi}}{C} = i_0 \]

\[i_0 = \frac{\psi}{L} \]

\[\frac{\psi}{L} = \frac{\psi L}{R} \]

\[\therefore \quad \psi_{ss} = \frac{\psi L}{R} \]

Also **Note:**

Loop gain \(= \frac{R}{L} \) \quad \therefore \quad \text{Time Constant} \quad \tau = \frac{L}{R}

Multiply by special form of \(1 \):

\[\tau = \frac{\dot{x}_0}{x_0} \cdot \frac{1}{R} \]

\[\tau = \frac{\dot{x}_0}{x_0} \cdot \frac{1}{R} \]

\[\frac{\dot{E}_0}{E_0} = \frac{1}{R} L \]

\(E_0 = \frac{1}{2} i_0^2 L \quad \therefore \quad E_0 = \frac{1}{2} \psi L \]

\(V_0 = i_0 R_0 \)

\(E_0 = \frac{1}{2} i_0^2 L \quad \therefore \quad R_0 = V_0 \)

Page 4 of 4