AC Transmission model

\[\frac{v_s}{\sqrt{m \frac{v_2}{J/\beta^2}}} \]
Sectionalized line

\[0 \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{3}{4} \quad \frac{3}{2} \quad R_{\frac{1}{2}} \quad x_{\frac{1}{2}} \quad m \quad 0 \]
Surge Impedence Loading = \[Z \]

An AC Line will produce

\[\text{MVAR} = (\frac{B}{2})v_i^2 + (\frac{B}{2})v_2^2 - I^2x \]
Assume \(V_1 = V_2 = 1 \)

MVAR's Produced = 0

\[0 = \beta_2 + \alpha_2 - I^2x \]

\[I^2x = B \]

\[I = \sqrt{B/x} \]