\(w_r^z \quad w_r \quad w_r^* \quad w_r = w_{\text{syn}} \quad w_r > w_r^* \)

\[V_o \quad w_{\text{syn}} \quad \text{Unit 1} \quad \text{Unit 2} \]

\[P_1 \Rightarrow 0 \quad P_2 \Rightarrow P_{\text{max}} \]
Excitation Systems
Excitors

AC

Brushless AC

Static

DC

1st in time
Variable stationery

Commutators & brushes

Art as usual, real.
University of Idaho

A.C. Excitor

100 kVA

Exciter

main w/lc

AC supply

chd rect.

CSCR bridge

slip rings & brushes
Static Excitation

Stationary (not rotating)

60°

360 Hz

1 kV

13 kV

24 kV
Separately Excited DC m/c
Used as the exciter

A. Ignore Saturation (Physical Units)
\[e_f = R_c e_f + \frac{dl}{dt} \]

\[y_{ef} = L_{ef} \]

\[k_x = \omega \cdot k \]

\[e_x = k_x y_{ef} \]

\[e_x = k_x y_{ef} \]
\[e^x = k \cdot l_{cf} \text{ i.f.} \]

\[R_j : = k \cdot l_{cf} \]

\[e^x = R_j \text{ i.f.} \]

not ohm's law
ex 4 iif are not electrically connected

ex 4 iif are not electrically
magnetically connected
\[e_{ef} = \frac{Rf \cdot \text{ex} + \frac{d\text{ef}}{dt}}{R_g} \]

\[e_{ef} = \frac{Rf \cdot \text{ex} + t}{kr \cdot \text{ef}} \]
\[E_{ef} = \frac{R_{ef}}{R_2} \]

\[E_{ef} = E_{x} - \frac{R_{ef}}{R_2} \]

\[E_{eff} = \sum_{x} k \]
\[E_x = \frac{K_x}{s} \left[E_{cf} - \frac{R_{cf}}{R_y} \right] + c_x(0) \]