Caprivi Link Interconnector
A step further in HVDC Light technology

IEEE/PES July 26-29 2009 Calgary
Caprivi Link
HVDC power transmission thru the Caprivi strip

Secure power supply to Namibia
- Hydro power from Zambia
- Coal fired power from Zimbabwe

Stage 1:
- 300 MW monopole
- converter and electrode stations at Zambezi and Gerus
  - 970 km ±350 kV DC OH-line
  - ~ 50 km electrode lines

Stage 2:
- Extension to 2 x 300 MW bipole
Caprivi Link: The DC link in Namibia’s power grid

Extension for stage 2:
280 km 400 kV AC line Auas-Gerus
320 kV AC OH line Zambezi – Hwange
Caprivi Link
Project history

- 2002: Small scale HVDC Light cable link
- 2004: Need of larger scale transmission
- Aug 2006: RFQ – conventional HVDC scheme
- May 2007: ABB offered:
  - Conventional HVDC scheme with 6 SCO at Gerus and SVC at Zambezi + 1 SCO for black start
  - Conventional HVDC scheme with 6 SCO at Gerus and 5 SCO at Zambezi
  - HVDC Light scheme for OH-lines

  ABB awarded order on conventional HVDC, but client preferred HVDC Light scheme

- Jun-Sept 2007: ABB and client agreed on 4 months verification period of new technical solutions for VSC alternative
- Nov 2007: Project start
Caprivi Link: ABB’s scope of work

- Gerus and Zambezi converter stations including AC double bus connection to substations
- Converter buildings and service building
- Electrode stations
- PLC back-up communication
- Engineering, manufacturing, procurement, transportation, civil work, installation, supervision, commissioning, training and 2 years O/M support
Caprivi Link
Delivery time

- Monopole: 26 months – in service Jan 16, 2010

- Bipole: option valid 18 months – 24 months delivery time starting Jan 16, 2010
Caprivi Link
The customer’s choice

- Why transmission?
  Generation alternatives more costly and uncertain

- Why HVDC?
  AC alternative unrealistic

- Why 350 kV DC-line?
  Lowest cost

- Why HVDC Light?
  Lowest investment cost and evaluated cost including losses

- Why bipole?
  N-1 criteria << 600 MW and stage-wise construction
Caprivi Link
HVDC Light link in two stages

Gerus Converter station
HVDC Line 970 km
Zambezi Converter station

400 kV AC
- 350 kV DC
+ 350 kV DC
330 kV AC

Electrode Lines 50 km
AC Filter
AC Filter
AC Filter
AC Filter
Caprivi Link
Features

- + 300/600 MW import to – 280/560 MW export without switching of AC filters (2*350 MW overload capability)
- ± 200 MVar at continuous AC voltage control of 400 kV/320 kV grid at Gerus/Zambezi
- Changes switching pattern between steady-state and during disturbances
- Stable and robust power transfer from 300 MVA minimum short circuit power to maximum 1400 MVA
- Black start of Caprivi region at power outages
- Frequency control at islanded AC grids
- Re-start after DC-line faults at lightenings within 500 ms after clearing
Caprivi Link
Circuit solution

970 km DC OH-line
$U_{dN} = -350 \text{kV}$
$I_{dN} = 857 \text{A}$

25 km electrode lines to earth electrodes

Outdoor AC filters  Indoor AC filter  IGBT valve  Smoothing reactor  DC capacitor  Converter reactor  Converter transformer
Caprivi Link
Bird’s eye view of converter station

1. DC yard
2. Converter building
3. Converter transformer
4. Service building
5. AC yard
6. AC filter
7. Coolers
8. DC line
9. Electrode line
10. Diesel generator
Caprivi Link
Converter building
Caprivi Link
Milestones – First HVDC Light project…

- … with OH-line for commercial use
- … operating at 350 kV DC
- … configured as a bipole
- … linking two extremely weak AC grids
- … to be a corner stone in the power supply of a country
- … in Africa