The Use of VSC-Based BtB as Grid Shock Absorber

Abdel-Aty Edris
aedris@epri.com
Voltage-Sourced Converter
“A Building Block for New Transmission Controllers”

Gate Turn Off Switch
GTO, GCT, IGBT

Transmission line
Transformer inductance
DC capacitor
Voltage source inverter

If $V_L = V_0$, $I = 0$
If $V_L < V_0$, $I = \text{capacitive}$
If $V_L > V_0$, $I = \text{inductive}$

Pulse-Width Modulation
VSC-Based BtB as a Grid Shock Absorber (GSA)

VSC-Based BTB

Area 1

Area 2

The idea!
Grid Segmentation and Grid Shock Absorbers
Grid Segmentation and Grid Shock Absorbers

- **Blue**: VSC-based BtB's: Grid Shock Absorbers
- **Red**: existing ac lines converted to dc
- **Orange**: concatenated & converted ac lines
- **Green**: future long haul dc lines

Grid Shock Absorber
“Proof of Concept” Study On Eastern Interconnection (EI)
Impact of “Substantial” Generation Trips on Power Flows

Case 2 – With ac links

Case 2 – With dc links

Selected bus voltages with ac ties (a) and dc links (b) in place. Voltages are not from the same buses in the two cases.
Segmentation and Grid Shock Absorber: R&D Project Opportunity

Grid Reliability and Efficiency Enhancement Network (GreenTM)

Transmission Interconnection
Overall issue or problem to be addressed

- Increased robustness and integrity of transmission grid
- Increased transmission efficiency
- Green House Gas (GHG) management.

Proposed Tasks

- Select a benchmark transmission grid, representing a Transmission Interconnection, e.g. Western Interconnection
- Identify cascading failure risks under particular operating conditions and contingencies
- Identify boundary configurations for improved robustness of the grid against cascading failures. These boundaries determine candidate sectors to be asynchronously linked using the Grid Shock Absorber concept, Voltage Sourced Converter (VSC)-based ties.
- Run test simulations to assure expected segmented behavior
- Assess grid reconfiguration costs and benefits
- Evaluate economic feasibility with Improved market operations
Research and Development Opportunity

Help the industry meet the following transmission needs:

- **Reliability enhancement**: Minimizing grid exposure to cascading system failures and outages

- **Efficiency enhancement**: Facilitating efficient scheduling and power trade by improving grid utilization at reduced costs of service

- **GHG management**: Least-cost access to distant resources to meet pending limits on GHG emissions
The proposed R&D effort will be guided by four design principles:

- Maximum utilization of existing and planned ac transmission infrastructures
- Superposition of a network of HVDC gates within the targeted grid to meet the three requirements **Reliability, Efficiency and GHG Management**
- The quality of the transmission services provided by the modified grids will equal or exceed what is expected without the implementation of the **GREEN™** Project
- Meeting all existing NERC, regional, and local planning and operating criteria
Grid Reliability and Efficiency Enhancement Network (GREEN)

Expected Results:

• Inter-sector power-flow controllability
• Higher line loadings
• Increased ROW power densities
• Consolidation of investments in reliability and market enhancements
• Reduced cascading blackouts
• Improved access to resources for better GHG management
Project Status

• Proof of Concept Product ID # 1014494
 “Technical Assessment of Grid Shock Absorber Concept”,
 “Segmentation with Grid Shock Absorbers for Reliability of Large Transmission Interconnections”
• ??
THANKS FOR YOUR ATTENTION

Questions?

Together…..Shaping the Future of Electricity