Recent Siemens’ HVDC Activities

Yuriy Kazachkov
Siemens PTI
LIPA saved over $20 million last summer by using the new Neptune HVDC cable to bring power to Long Island during the peak summer season in July, August, and September.
Sayreville HVDC Converter Station
Power Transmission and Distribution

2500MW – 500kV

awarded *March 2007 – Power Grid Corp. of India*

<table>
<thead>
<tr>
<th>Customer</th>
<th>Power Grid Corp. of India Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Ballia-Bhiwadi</td>
</tr>
<tr>
<td>Location</td>
<td>Uttar Pradesh Province, Rajasthan Province</td>
</tr>
<tr>
<td>Power Rating</td>
<td>2500MW</td>
</tr>
<tr>
<td>Type of Plant</td>
<td>HVDC Classic Bipole, 800km Long</td>
</tr>
<tr>
<td>Voltage Levels</td>
<td>± 500kV DC, 400kV AC, 50Hz</td>
</tr>
<tr>
<td>Type of Semiconductors</td>
<td>LTT 8kV (3600)</td>
</tr>
</tbody>
</table>
600MW – 400kV
awarded May 2007 – Energinet/ Storebælt HVDC

<table>
<thead>
<tr>
<th>Costumer</th>
<th>Energinet.dk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Storebælt</td>
</tr>
<tr>
<td>Location</td>
<td>The Island Funen and Zealand in Denmark</td>
</tr>
<tr>
<td>Power Rating</td>
<td>600MW</td>
</tr>
<tr>
<td>Type of Plant</td>
<td>HVDC Classic Monopole 56km Submarine Cable</td>
</tr>
<tr>
<td>Voltage Levels</td>
<td>± 400kV DC, 400kV AC, 50Hz</td>
</tr>
<tr>
<td>Type of Semiconductors</td>
<td>LTT 8kV (1440)</td>
</tr>
</tbody>
</table>
5000MW – 800kV awarded June 2007 – China Southern Grid Company

<table>
<thead>
<tr>
<th>Costumer</th>
<th>China Southern Power Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Yunnan - Guangdong</td>
</tr>
<tr>
<td>Location</td>
<td>Chuxiong City/ Yunnan Zengcheng City/ Guangdong</td>
</tr>
<tr>
<td>Power Rating</td>
<td>5000MW</td>
</tr>
<tr>
<td>Type of Plant</td>
<td>Long Distance Bipole 1418km</td>
</tr>
<tr>
<td>Voltage Levels</td>
<td>± 800kV DC 525kV AC, 50Hz</td>
</tr>
<tr>
<td>Type of Semiconductors</td>
<td>LTT 8kV (5760)</td>
</tr>
</tbody>
</table>
1000MW – 450kV awarded June 2007 – National Grid and TenneT

Costumer: BritNed Development Ltd
Project Name: BritNed
Location: Isle of Grain, UK
Maasvlakte, NL
Power Rating: 1000MW
Type of Plant: HVDC Classic Bipolar
260km Submarine Cable
Voltage Levels: ± 450kV DC
400kV AC, 50Hz
Type of Semiconductors: LTT 8kV (3360)
400MW – 250kV
awarded October 2007 – Red Eléctrica de Espana (REE)

<table>
<thead>
<tr>
<th>Costumer</th>
<th>Red Eléctrica de Espana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
<td>Cometa</td>
</tr>
<tr>
<td>Location</td>
<td>Spain – Mallorca</td>
</tr>
<tr>
<td>Power Rating</td>
<td>2 x 200MW</td>
</tr>
<tr>
<td>Type of Plant</td>
<td>HVDC Classic Bipole 250km Submarine Cable</td>
</tr>
<tr>
<td>Voltage Levels</td>
<td>± 250kV DC 400kV / 230kV AC, 50Hz</td>
</tr>
<tr>
<td>Type of Semiconductors</td>
<td>LTT 8kV</td>
</tr>
</tbody>
</table>
Costumer
Trans Bay Cable LLC

Project Name
Trans Bay Cable Project

Location
- Pittsburg, CA
- San Francisco, CA

Power Rating
400MW

Type of Plant
59-mile HVDC PLUS Submarine Cable

Voltage Levels
± 200kV DC
230kV/138kV AC, 60Hz

Type of Semiconductors
IGBT (5184)
Trans Bay Cable Project, USA
World’s 1st VSC HVDC with Modular Multilevel Converter (MMC) Technology

Energy Exchange by Sea Cable
No Increase in Short-Circuit Power

P = 400 MW, ± 200 kV DC Cable
Q = +/- 170-300 MVAr

Dynamic Voltage Support

P = 400 MW, ± 200 kV DC Cable
Q = +/- 170-300 MVAr
Benefits of Trans Bay Cable Project:
by-passing existing O/H Transmission

Transmission Constraints after TBC

Trans Bay Cable

Transmission Constraints before TBC

Significant Improvements

HVDC PLUS makes it feasible
Trans Bay Cable Project, USA
World’s 1st VSC HVDC with ± 200 kV XLPE DC Cable

- Converter: Modular Multilevel HVDC PLUS Converter
- Rated Power: 400 MW @ AC Terminal receiving End
- DC Voltage: ± 200 kV
- Submarine Cable: Extruded Insulation DC Cable
The Evolution of HVDC PLUS and VSC Technology

Power Electronic Devices:

- GTO / IGCT Module
- IGBT in Power Pack
- IGBT
VSC Technology – 2 or 3 Level

High harmonic Distortion

High Stresses resulting in HF Noise
The Advanced Multilevel Approach:

MMC – Modular Multilevel Converter

- Small Converter AC Voltage Steps
- Low Rate of Voltage Rise
- Low Generation of Harmonics
- Low Level of HF Noise
- Low Switching Losses
Features and Benefits of HVDC PLUS

- Multilevel Topology
- Modular Concept
- Standard Power Electronics
- Compactness of Station Design
- Low Switching Frequency
- Elimination of high Frequency Stresses
- Conventional AC Transformers
- Proven Siemens WinTDC core hardware
HVDC PLUS
Benefits of HVDC PLUS

Example 400 MW

HVDC "Classic"
Many Thanks Questions?